1/135.2.2平行线的判定第2课时一、教学目标【知识与技能】1.进一步掌握平行线的判定方法,并会运用平行线的判定解决问题.2.掌握垂直于同一条直线的两条直线互相平行.3.经历例题的分析过程,从中体会转化的思想和分析问题的方法,进一步培养推理能力.【过程与方法】通过学生自学、讨论、教师点拔完成本节内容。培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。【情感态度与价值观】培养学生自学能力,增强学生合作意识和勇于探索的精神。二、课型2/13新授课三、课时第2课时共2课时四、教学重难点【教学重点】1.直线平行条件的应用;2.平行线的判定方法(3),并能准确运用证明两条直线平行.【教学难点】选取适当判定直线平行的方法进行说理.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.3/13(二)探索新知1.出示课件4-9,探究平行线判定方法的灵活应用考点1:平行线判定方法的灵活应用例1:如图,直线EF与∠ABC的一边BA相交于D,∠B+∠ADE=180°,EF与BC平行吗?为什么?(出示课件4)师生共同讨论解答如下:解:EF//BC.理由如下: ∠B+∠1=180°(已知),∠1=∠2(对顶角相等),∴∠B+∠2=180°(等量代换).∴EF∥BC(同旁内角互补,两直线平行).4/13出示课件5,学生自主练习后口答,教师订正.例2:已知:如图,ABC、CDE都是直线,且∠1=∠2,∠1=∠C,求证:AC∥FD.学生独立思考后,师生共同解答.证明: ∠1=∠2,∠1=∠C(已知),∴∠2=∠C(等量代换).∴AC∥FD(同位角相等,两直线平行).出示课件7,学生自主练习后口答,教师订正.例3:已知:如图,四边形ABCD中,AC平分∠BAD,∠1=∠2,AB与CD平行吗?为什么?(出示课件8)5/13学生独立思考后,师生共同解答.解:AB∥CD.理由如下: AC平分∠BAD,∴∠1=∠3. ∠1=∠2, ∠2和∠3是内错角,∴AB∥CD(内错角相等,两直线平行).出示课件9,学生自主练习后口答,教师订正.2.出示课件10-13,探究在同一平面内,垂直于同一直线的两直线平行。教师问:在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?学生答:猜想:垂直于同一条直线的两条直线平行.教师问:为什么平行呢?你能证明吗?6/13师生...