13.4二元一次方程组的应用第2课时百分率和配套问题教学目标1.学会运用二元一次方程组解决百分率和配套问题;2.进一步经历和体验方程组解决实际问题的过程。教学重难点【教学重点】根据题中的各个量的关系,准确列出方程组。【教学难点】借助列表,数与数之间的关系,分析出问题中所蕴涵的数量关系。课前准备课件、教具等。教学过程一、情境导入(1)某工厂去年的总产值是x万元,今年的总产值比去年增加了20%,则今年的总产值是________万元;(2)若该厂去年的总支出为y万元,今年的总支出比去年减少了10%,则今年的总支出是________万元;(3)若该厂今年的利润为780万元,那么由(1),(2)可得方程________________.二、合作探究探究点一:列方程组解决百分率问题【类型一】列方程组解决增长率问题例1为了解决民工子女入学难的问题,我市建立了一套进城民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,去年秋季有5000名民工子女进入主城区中小学学习,预测今年秋季进入主城区中小学学习的民工子女将比去年有所增加,其中小学增加20%,中学增加30%,这样今年秋季将新增1160名民工子女在主城区中小学学习.(1)如果按小学每年收“借读费”500元、中学每年收“借读费”1000元计算,求今年秋季新增的1160名中小学生共免收多少“借读费”;(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,按今年秋季入学后,民工子女在主城区中小学就读的学生人数计算,一共需配备多少名中小学教师?解析:解决此题的关键是求出今年秋季入学的学生中,小学生和初中生各有民工子女多少人.欲求解这个问题,先要求出去年秋季入学的学生中,小学生和初中生各有民工子女多少人.解:(1)设去年秋季在主城区小学学习的民工子女有x人,在主城区中学学习的民工子女有y人.则解得20%x=680,30%y=480,500×680+1000×480=820000(元)=82(万元).答:今年秋季新增的1160名中小学生共免收82万元“借读费”;(2)今年秋季入学后,在小学就读的民工子女有3400×(1+20%)=4080(人),在中学2就读的民工子女有1600×(1+30%)=2080(人),需要配备的中小学教师(4080÷40)×2+(2080÷40)×3=360(名).答:一共需配备360名中小学教师.方法总结:在解决增长相关的问题中,应注意原来的量与增加后的量之间的换算关系:增长率=(增长后的量-原量)÷原量.【类型二】列方程组解决利润问题例2某商场购进甲、乙两种商品后,甲商品加价50%、乙商品加价40%作为标...