直角三角形与勾股定理一、选择题1.(2014•湘潭,第7题,3分)以下四个命题正确的是()A.任意三点可以确定一个圆B.菱形对角线相等C.直角三角形斜边上的中线等于斜边的一半D.平行四边形的四条边相等考点:命题与定理分析:利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案.解答:解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等.故选C.点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般.2.(2014•湘潭,14题,3分)如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=4.(第2题图)考点:切线的性质;勾股定理.分析:先根据切线的性质得到OA⊥PA,然后利用勾股定理计算PA的长.解答:[来源:解: PA切⊙O于A点,∴OA⊥PA,学*科*网]在Rt△OPA中,OP=5,OA=3,∴PA==4.故答案为4.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.3.(2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,C.1,1,D.1,2,考点:解直角三角形专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答:解:A、 1+2=3,不能构成三角形,故选项错误;B、 12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.4.(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()(第4题图)A.3B.4C.5D.6考点:含...