学习目标:1.理解椭圆标准方程的推导;2.掌握椭圆的标准方程;3.会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。看课本P38---P401.理解椭圆标准方程的推导;2.掌握椭圆的标准方程;3.会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标。10分钟后回答问题(如有疑问可以问老师或同桌小声讨论)PF2F1注意:椭圆定义中容易遗漏的三处地方:(1)必须在平面内;(2)两个定点---两点间距离确定;(常记作2c)(3)绳长---轨迹上任意点到两定点距离和确定.(常记作2a,且2a>2c)1.椭圆定义:平面内与两个定点的距离和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.12,FF12||FF思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段);两定点间距离较短,则所画出的椭圆较圆(圆).由此可知,椭圆的形状与两定点间距离、绳长有关.若2a=F1F2轨迹是什么呢?若2a2c>0)定义12yoFFMx1oFyx2FM注:共同点:椭圆的标准方程表示的一定是焦点在坐标轴上,中心在坐标原点的椭圆;方程的左边是平方和,右边是1.2x2y不同点:焦点在x轴的椭圆项分母较大.焦点在y轴的椭圆项分母较大.11625)2(22yx11)3(2222mymx11616)1(22yx0225259)4(22yx123)5(22yx11624)6(22kykx练习1.下列方程哪些表示椭圆?22,ba若是,则判定其焦点在何轴?并指明,写出焦点坐标.?练习2.求适合下列条件的椭圆的标准方程:(2)焦点为F1(0,-3),F2(0,3),且a=5;2212516yx2216xy(1)a=,b=1,焦点在x轴上;6(3)两个焦点分别是F1(-2,0)、F2(2,0),且过P(2,3)点;(4)经过点P(-2,0)和Q(0,-3).2211612xy22xy+=149小结:求椭圆标准方程的步骤:①定位:确定焦点所在的坐标轴;②定量:求a,b的值.练习3.已知椭圆的方程为:,请填空:(1)a=__,b=__,c=__,焦点坐标为___________,焦距等于__(2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点,并且CF1=2,则CF2=___.1162522yx变式:若椭圆的方程为,则标准方程为14491622yx5436(-3,0)、(3,0)8116922yx4,3,7abc练习4.已知方程表示焦点在x轴上的椭圆,则m的取值范围是.22xy+=14m(0,4)变1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是.22xy+=1m-13-m(1,2)