3.1.3概率的基本性质课时目标1.了解事件间的相互关系.2.理解互斥事件、对立事件的概念.3.会用概率的加法公式求某些事件的概率.1.事件的关系与运算(1)包含关系一般地,对于事件A与事件B,如果事件A________,则事件B________,这时称事件B包含事件A(或称事件A包含于事件B).记作________________.不可能事件记作∅,任何事件都包含____________.一般地,如果B⊇A,且A⊇B,那么称事件A与事件B________,记作________.(2)并事件若某事件发生当且仅当______________________,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).(3)交事件若某事件发生当且仅当______________________,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).(4)互斥事件与对立事件①互斥事件的定义若A∩B为________________(A∩B=__________),则称事件A与事件B互斥.②对立事件的含义若A∩B为________________,A∪B是__________,则称事件A与事件B互为对立事件.2.概率的几个基本性质(1)概率的取值范围__________.(2)________的概率为1,__________的概率为0.(3)概率加法公式如果事件A与B为互斥事件,则P(A∪B)=____________.特殊地,若A与B为对立事件,则P(A)=1-P(B).P(A∪B)=____,P(A∩B)=____.一、选择题1.给出事件A与B的关系示意图,如图所示,则()A.A⊆BB.A⊇BC.A与B互斥D.A与B互为对立事件2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是()A.A⊆DB.B∩D=∅C.A∪C=DD.A∪B=B∪D3.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述几对事件中是对立事件的是()A.①B.②④C.③D.①③4.下列四种说法:①对立事件一定是互斥事件;②若A,B为两个事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A,B是对立事件.其中错误的个数是()A.0B.1C.2D.35.从一批羽毛球产品中任取一个,其质量小于4.8g的概率为0.3,质量小于4.85g的概率为0.32,那么质量在[4.8,4.85]g范围内的概率是()A.0.62B.0.38C.0.02D.0.686.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是...