课题:正态分布(一)〖教学目标〗(1)深刻理解并掌握正态分布和正态曲线的概念、意义及性质.(2)理解和掌握标准正态总体、标准正态曲线的概念、意义及性质.(3)能用正态分布、正态曲线研究有关随机变量分布的规律.(4)会画有关正态分布的正态曲线和标准正态曲线.(5)会用函数的概念、性质解决有关正态分布的问题.〖教学重点〗正态分布的意义,正态分布的主要性质.〖教学难点〗正态分布的意义及性质,标准正态总体,标准正态曲线的概念.〖教学方法〗探究式教学法〖课时安排〗1课时〖多媒体工具〗多媒体、实物投影仪〖教学过程〗一、复习引入1.复习提问(1)运用多媒体画出(图1-3)频率分布直方图.(2)当n由100增至200时,观察频率分布直方图的变化.(3)请问当样本容量n无限增大时,频率分布直方图变化的情况?(频率分布就会无限接近一条光滑曲线——总体密度曲线)(4)样本容量越大,总体估计就越精确.[来源:www.shulihua.netwww.shulihua.net]2.通过实例,说明正态分布(密度)是最基本、最重要的一种分布.如学生的学习成绩、气象中的平均气温、平均湿度等等,都服从或近似地服从正态分布.二、讲解新课1.正态分布与正态曲线(1)总体密度曲线可以用一个函数的图象来拟合,我们选用什么样的函数呢?换句话讲,由这个曲线,我们可以想到哪类函数与它相近似?(2)如果随机变量的概率密度为(为常数,且),称服从参数为的正态分布,用~表示,的表达式可简记为,它的密度曲线简称为正态曲线.其中:π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差例1下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)(2)(3)(答案:μ=0,σ=1;μ=1,σ=2;μ=-1,σ=0.5)2.正态曲线的性质通过对三组正态曲线分析,得出正态曲线具有的基本特征是两头底、中间高、且关于某条直线对称.结合正态曲线,归纳其以下性质:(1)曲线在x轴的上方,与x轴不相交.[来源:www.shulihua.net](2)曲线关于直线x=μ对称.(3)当x=μ时,曲线位于最高点.(4)当x<μ时,曲线上升(增函数);当x>μ时,曲线下降(减函数).并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近.(5)μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,总体分布越分散;σ越小,曲线越“高”,总体分布越集中;五条性质中前三条学生较易掌握,后两条较难理解,因此在讲授时应运用数形结合的原则,采用对比教学.例2正态总体的函数表示式是,(1)...