温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(三)合情推理(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·厦门高二检测)定义A*B,B*C,C*D,D*A的运算分别对应下图中的(1),(2),(3),(4),那么下图中的(A),(B)所对应的运算结果可能是()A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D【解析】选B.由(1)(2)(3)(4)图得A表示|,B表示□,C表示—,D表示○,故图(A)(B)表示B*D和A*C.2.给出下列三个类比结论:①类比ax·ay=ax+y,则有ax÷ay=ax-y;②类比loga(xy)=logax+logay,则有sin(α+β)=sinαsinβ;③类比(a+b)2=a2+2ab+b2,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是()A.0B.1C.2D.3【解析】选C.根据指数的运算法则知ax÷ay=ax-y,故①正确;根据三角函数的运算法则知:sin(α+β)≠sinαsinβ,②不正确;根据向量的运算法则知:(a+b)2=a2+2a·b+b2,③正确.【补偿训练】若数列{an}(n∈N*)是等差数列,则有数列bn=(n∈N*)也是等差数列.类比上述性质,相应地有,若数列{cn}(n∈N*)是等比数列,且cn>0,则数列dn=(n∈N*)也是等比数列.【解析】由等差、等比数列的性质易知,等差数列、等比数列在运算上具有相似性.等差与等比类比是和与积、倍与乘方、商与开方的类比.由此猜想dn=.答案:3.设n棱柱有f(n)个对角面,则(n+1)棱柱的对角面的个数f(n+1)等于()A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2【解析】选C.因为过不相邻两条侧棱的截面为对角面,过每一条侧棱与它不相邻的一条侧棱都能作对角面,可作(n-3)个对角面,n条侧棱可作n(n-3)个对角面,由于这些对角面是相互之间重复计算了,所以共有n(n-3)÷2个对角面,所以可得f(n+1)-f(n)=(n+1)(n+1-3)÷2-n(n-3)÷2=n-1,故f(n+1)=f(n)+n-1.4.(2015·北京高二检测)设0<θ<,已知a1=2cosθ,an+1=,猜想an=()A.2cosB.2cosC.2cosD.2sin【解析】选B.因为a1=2cosθ,a2==2=2cos,a3==2=2cos,…,猜想an=2cos.【一题多解】验n=1时,排除A,C,D.5.(2015·吉林高二检测)设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体P-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体P-ABC的体积为V,则r=()A.B.C.D.【解析】选C.△ABC的三条边长a,b,c类比到四面体P-ABC的四个面面积S1,S2,S3,S4,将三角形面积公式中系数类比到三棱锥体积公式中系数,从而可知...