3.2.2复数代数形式的乘除运算[学习目标]1.掌握复数代数形式的乘法和除法运算.2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念.[知识链接]写出下列各小题的计算结果:(1)(a±b)2=________;(2)(3a+2b)(3a-2b)________;(3)(3a+2b)(-a-3b)________.(4)(x-y)÷(+)________.答案(1)a2±2ab+b2(2)9a2-4b2(3)-3a2-11ab-6b2(4)-[预习导引]1.复数的乘法法则设z1=a+bi,z2=c+di(a,b,c,d∈R),则z1·z2=(a+bi)(c+di)=(ac-bd)+(ad+bc)i.2.复数乘法的运算律对任意复数z1、z2、z3∈C,有交换律z1·z2=z2·z1结合律(z1·z2)·z3=z1·(z2·z3)乘法对加法的分配律z1(z2+z3)=z1z2+z1z33.共轭复数如果两个复数满足实部相等,虚部互为相反数时,称这两个复数为共轭复数,z的共轭复数用表示.即z=a+bi,则=a-bi.4.复数的除法法则设z1=a+bi,z2=c+di(c+di≠0),则===+i.要点一复数乘除法的运算例1计算:(1)(2+i)(2-i);(2)(1+2i)2.解(1)(2+i)(2-i)=4-i2=4-(-1)=5;(2)(1+2i)2=1+4i+(2i)2=1+4i+4i2=-3+4i.规律方法(1)复数的乘法可以按照多项式的乘法法则进行,注意选用恰当的乘法公式进行简便运算,例如平方差公式、完全平方公式等.(2)像3+4i和3-4i这样的两个复数叫做互为共轭复数,其形态特征为a+bi和a-bi,其数值特征为(a+bi)(a-bi)=a2+b2.跟踪演练1计算:(1)(1-2i)(3+4i)(-2+i);(2)(3+4i)(3-4i);(3)(1+i)2.解(1)(1-2i)(3+4i)(-2+i)=(11-2i)(-2+i)=-20+15i;(2)(3+4i)(3-4i)=32-(4i)2=9-(-16)=25;(3)(1+i)2=1+2i+i2=2i.例2计算:(1)(1+2i)÷(3-4i);(2)6+.解(1)(1+2i)÷(3-4i)====-+i;(2)原式=6+=i6+=-1+i.规律方法复数的除法先写成分式的形式,再把分母实数化(方法是分母与分子同时乘以分母的共轭复数,若分母是纯虚数,则只需同时乘以i).跟踪演练2计算:(1);(2).解(1)===1-i;(2)===-1-3i.要点二共轭复数及其应用例3已知复数z满足:z·+2iz=8+6i,求复数z的实部与虚部的和.解设z=a+bi(a,b∈R),则z·=a2+b2,∴a2+b2+2i(a+bi)=8+6i,即a2+b2-2b+2ai=8+6i,∴,解得,∴a+b=4,∴复数z的实部与虚部的和是4.规律方法本题使用了复数问题实数化思想,运用待定系数法,化解了问题的难点.跟踪演练3已知复数z满足|z|=1,且(3+4i)z是纯虚数,求z的共轭复数.解...