3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念[学习目标]1.了解引进虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件.[知识链接]为解决方程x2=2,数系从有理数扩充到实数;数的概念扩充到实数集后,人们发现在实数范围内也有很多问题不能解决,如从解方程的角度看,x2=-1这个方程在实数范围内就无解,那么怎样解决方程x2=-1在实数系中无根的问题呢?答设想引入新数i,使i是方程x2=-1的根,即i·i=-1,方程x2=-1有解,同时得到一些新数.[预习导引]1.复数的有关概念(1)复数的概念:形如a+bi的数叫做复数,其中a,b∈R,i叫做虚数单位.a叫做复数的实部,b叫做复数的虚部.(2)复数的表示方法:复数通常用字母z表示,即z=a+bi.(3)复数集定义:全体复数所构成的集合叫做复数集.通常用大写字母C表示.2.复数的分类及包含关系(1)复数(a+bi,a,b∈R)(2)集合表示:3.复数相等的充要条件设a,b,c,d都是实数,那么a+bi=c+di⇔a=c且b=d.要点一复数的概念例1请说出下列复数的实部和虚部,并判断它们是实数,虚数,还是纯虚数.①2+3i;②-3+i;③+i;④π;⑤-i;⑥0.解①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为,是虚数;③的实部为,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-,是纯虚数;⑥的实部为0,虚部为0,是实数.规律方法复数a+bi中,实数a和b分别叫做复数的实部和虚部.特别注意,b为复数的虚部而不是虚部的系数,b连同它的符号叫做复数的虚部.跟踪演练1已知下列命题:①复数a+bi不是实数;②当z∈C时,z2≥0;③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;④若复数z=a+bi,则当且仅当b≠0时,z为虚数;⑤若a、b、c、d∈C时,有a+bi=c+di,则a=c且b=d.其中真命题的个数是________.答案0解析根据复数的有关概念判断命题的真假.①是假命题,因为当a∈R且b=0时,a+bi是实数.②是假命题,如当z=i时,则z2=-1<0,③是假命题,因为由纯虚数的条件得,解得x=2,当x=-2时,对应复数为实数.④是假命题,因为没有强调a,b∈R.⑤是假命题,只有当a、b、c、d∈R时,结论才成立.要点二复数的分类例2实数m为何值时,复数z=+(m2+2m-3)i是(1)实数;(2)虚数;(3)纯虚数.解(1)要使z是实数,m需满足m2+2m-3=0,且有意义即m-...