温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(七)反证法(25分钟60分)一、选择题(每小题5分,共25分)1.(2014·山东高考)用反证法证明命题:“已知a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【解析】选A.“方程x2+ax+b=0至少有一个实根”的反面是“方程x2+ax+b=0没有实根.”【补偿训练】(2015·海口高二检测)用反证法证明命题:三角形三个内角至少有一个不大于60°时,应假设()A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°【解析】选B.三个内角至少有一个不大于60°,即有一个、两个或三个不大于60°,其反设为都大于60°,故B正确.2.命题“关于x的方程ax=b(a≠0)的解是唯一的”的结论的否定是()A.无解B.两解C.至少两解D.无解或至少两解【解析】选D.“解是唯一的”的否定是“无解或至少两解”.3.实数a,b,c满足a+2b+c=2,则()A.a,b,c都是正数B.a,b,c都大于1C.a,b,c都小于2D.a,b,c中至少有一个不小于【解析】选D.假设a,b,c均小于,则a+2·b+c<+1+=2,与已知矛盾,故假设不成立,所以a,b,c中至少有一个不小于.4.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】选C.假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.5.(2015·杭州高二检测)设a,b,c大于0,则3个数:a+,b+,c+的值()A.都大于2B.至少有一个不大于2C.都小于2D.至少有一个不小于2【解题指南】由基本不等式知三个数的和不小于6,可以判断三个数至少有一个不小于2,所以可假设这三个数都小于2来推出矛盾.【解析】选D.假设a+,b+,c+都小于2,即a+<2,b+<2,c+<2,所以++<6,又a>0,b>0,c>0,所以++=++≥2+2+2=6.这与假设矛盾,所以假设不成立.二、填空题(每小题5分,共15分)6.(2015·西安高二检测)“任何三角形的外角都至少有两个钝角”的否定是.【解析】该命题的否定有两部分,一是任何三角形,二是至少有两个,其否定应为“存在一个三角形,其外角最多有一个钝角”.答案:“存在一个三角形,其外角最多有一个钝角”【延伸探究】命题“三角形中最多只有一个内角是直...