§2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理课时目标1.理解并掌握平面向量基本定理.2.掌握向量之间的夹角与垂直.1.平面向量基本定理(1)定理:如果e1,e2是同一平面内的两个______向量,那么对于这一平面内的______向量a,__________实数λ1,λ2,使a=____________________________.(2)基底:把________的向量e1,e2叫做表示这一平面内________向量的一组基底.2.两向量的夹角与垂直(1)夹角:已知两个__________a和b,作OA=a,OB=b,则________=θ(0°≤θ≤180°),叫做向量a与b的夹角.①范围:向量a与b的夹角的范围是______________.②当θ=0°时,a与b________.③当θ=180°时,a与b________.(2)垂直:如果a与b的夹角是________,则称a与b垂直,记作______________.一、选择题1.若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是()A.e1-e2,e2-e1B.2e1+e2,e1+e2C.2e2-3e1,6e1-4e2D.e1+e2,e1-e22.等边△ABC中,AB与BC的夹角是()A.30°B.45°C.60°D.120°3.下面三种说法中,正确的是()①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可作为基底中的向量.A.①②B.②③C.①③D.①②③4.若OP1=a,OP2=b,P1P=λPP2(λ≠-1),则OP等于()A.a+λbB.λa+(1-λ)bC.λa+bD.a+b5.如果e1、e2是平面α内两个不共线的向量,那么在下列各命题中不正确的有()①λe1+μe2(λ、μ∈R)可以表示平面α内的所有向量;②对于平面α中的任一向量a,使a=λe1+μe2的实数λ、μ有无数多对;③若向量λ1e1+μ1e2与λ2e1+μ2e2共线,则有且只有一个实数λ,使λ1e1+μ1e2=λ(λ2e1+μ2e2);④若实数λ、μ使λe1+μe2=0,则λ=μ=0.A.①②B.②③C.③④D.②6.如图,在△ABC中,AD是BC边上的中线,F是AD上的一点,且=,连结CF并延长交AB于E,则等于()A.B.C.D.题号123456答案二、填空题7.设向量m=2a-3b,n=4a-2b,p=3a+2b,试用m,n表示p,p=________.8.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1.其中能作为平面内所有向量的一组基底的序号是________.(写出所有满足条件的序号)9.在△ABC中,AB=c,AC=b.若点D满足BD=2DC,则AD=____________.10.在平行四边形ABCD中,E和F分别是边CD和BC的中点...