学业分层测评(二十三)(建议用时:45分钟)[达标必做]一、选择题1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心【解析】易知直线过定点(0,1),且点(0,1)在圆内,但是直线不过圆心(0,0).【答案】C2.若PQ是圆x2+y2=9的弦,PQ的中点是A(1,2),则直线PQ的方程是()A.x+2y-3=0B.x+2y-5=0C.2x-y+4=0D.2x-y=0【解析】结合圆的几何性质知直线PQ过点A(1,2),且和直线OA垂直,故其方程为:y-2=-(x-1),整理得x+2y-5=0.【答案】B3.(2015·安徽高考)直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12【解析】法一:由3x+4y=b得y=-x+,代入x2+y2-2x-2y+1=0,并化简得25x2-2(4+3b)x+b2-8b+16=0,Δ=4(4+3b)2-4×25(b2-8b+16)=0,解得b=2或12.法二:由圆x2+y2-2x-2y+1=0可知圆心坐标为(1,1),半径为1,所以=1,解得b=2或12.【答案】D4.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为()A.-1或B.1或3C.-2或6D.0或4【解析】由弦长公式l=2,可知圆心到直线的距离d=,即=,解得a=0或4.【答案】D5.圆x2+y2-4x+6y-12=0过点(-1,0)的最大弦长为m,最小弦长为n,则m-n=()A.10-2B.5-C.10-3D.5-【解析】圆的方程可化为(x-2)2+(y+3)2=25,圆心(2,-3)到(-1,0)的距离为=3<5.∴最大弦长为直径,即m=10,最小弦长为以(-1,0)为中点的弦,即n=2=2.∴m-n=10-2.【答案】A二、填空题6.直线x-y=0与圆(x-2)2+y2=4交于点A、B,则|AB|=________.【导学号:09960140】【解析】圆心到直线的距离d==,半径r=2,∴|AB|=2=2.【答案】27.(2015·烟台高一检测)圆x2+y2+2x+4y-3=0上到直线x+y+1=0的距离为的点有________个.【解析】圆的方程可化为(x+1)2+(y+2)2=8,所以弦心距为d==.又圆的半径为2,所以到直线x+y+1=0的距离为的点有3个.【答案】3三、解答题8.过点A(1,1),且倾斜角是135°的直线与圆(x-2)2+(y-2)2=8是什么位置关系?若相交,试求出弦长.【解】因为tan135°=-tan45°=-1,所以直线方程为y-1=-(x-1),即x+y-2=0.圆心到直线的距离d==<r=2,所以直线与圆相交.弦长为2=2=2.9.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-2,0)的动直线l与圆A相交于M,N两点,Q...