§2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义课时目标1.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.2.体会平面向量的数量积与向量投影的关系.3.掌握向量数量积的运算律.1.平面向量数量积(1)定义:已知两个非零向量a与b,我们把数量______________叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,其中θ是a与b的夹角.(2)规定:零向量与任一向量的数量积为____.(3)投影:设两个非零向量a、b的夹角为θ,则向量a在b方向的投影是____________,向量b在a方向上的投影是______________.2.数量积的几何意义a·b的几何意义是数量积a·b等于a的长度|a|与b在a的方向上的投影________________的乘积.3.向量数量积的运算律(1)a·b=________(交换律);(2)(λa)·b=________=________(结合律);(3)(a+b)·c=______________________(分配律).一、选择题1.|a|=2,|b|=4,向量a与向量b的夹角为120°,则向量a在向量b方向上的投影等于()A.-3B.-2C.2D.-12.已知a⊥b,|a|=2,|b|=3,且3a+2b与λa-b垂直,则λ等于()A.B.-C.±D.13.已知向量a,b满足a·b=0,|a|=1,|b|=2,则|2a-b|等于()A.0B.2C.4D.84.在边长为1的等边△ABC中,设BC=a,CA=b,AB=c,则a·b+b·c+c·a等于()A.-B.0C.D.35.若非零向量a,b满足|a|=|b|,(2a+b)·b=0,则a与b的夹角为()A.30°B.60°C.120°D.150°6.若向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为()A.2B.4C.6D.12题号123456答案二、填空题7.已知向量a与b的夹角为120°,且|a|=|b|=4,那么b·(2a+b)的值为________.8.给出下列结论:①若a≠0,a·b=0,则b=0;②若a·b=b·c,则a=c;③(a·b)c=a(b·c);④a·[b(a·c)-c(a·b)]=0.其中正确结论的序号是________.9.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=________.10.已知a是平面内的单位向量,若向量b满足b·(a-b)=0,则|b|的取值范围是________.三、解答题11.已知|a|=4,|b|=3,当(1)a∥b;(2)a⊥b;(3)a与b的夹角为60°时,分别求a与b的数量积.12.已知|a|=|b|=5,向量a与b的夹角为,求|a+b|,|a-b|.能力提升13.已知|a|=1,|b|=1,a,b的夹角为120°,计算向量2a-b在向量a+b方向上的投影.14.设n和m是两个单位向量,其夹角是60°,求向量a=2m+n与b=2n-3m的夹角.1.两向量a与b的数量...