温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业九椭圆及其标准方程一、选择题(每小题5分,共25分)1.(2016·青岛高二检测)已知椭圆+=1上一点P到其中一个焦点的距离为3,则点P到另一个焦点的距离为()A.2B.3C.5D.7【解析】选D.设该椭圆的两个焦点分别为F1,F2,利用椭圆的定义可知|PF1|+|PF2|=10.不妨令|PF1|=3,则|PF2|=7.2.(2016·日照高二检测)已知椭圆+=1上的点M到该椭圆一个焦点F的距离为2,N是MF的中点,O为坐标原点,那么线段ON的长是()A.2B.4C.8D.【解析】选B.设椭圆的另一个焦点为E,如图,则|MF|+|ME|=10,所以|ME|=8.又ON为△MEF的中位线,所以|ON|=|ME|=4.3.椭圆+=1的焦距是2,则m的值是()A.5B.3或8C.3或5D.20【解析】选C.由题意得2c=2,c=1,故有m-4=1或4-m=1,所以m=5或m=3.4.(2016·淄博高二检测)若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上点的最短距离为,则这个椭圆的方程为()A.+=1B.+=1C.+=1或+=1D.以上都不对【解析】选C.设短轴的一个端点为P,焦点分别为F1,F2,因为△PF1F2为正三角形,所以|OP|=|F1F2|,可得b=c,即=c.①又因为椭圆的焦点到椭圆上点的最短距离为,所以a-c=,②联立①②,可得a=2,c=,b==3.因此a2=12且b2=9,可得椭圆的标准方程为+=1或+=1.5.已知椭圆+y2=1的焦点为F1,F2,点M在该椭圆上,且·=0,则点M到x轴的距离为()A.B.C.D.【解题指南】由·=0知△MF1F2为直角三角形,可根据面积求M到x轴的距离.【解析】选C.由·=0,得MF1⊥MF2,可设|=m,|=n,在△F1MF2中,由m2+n2=4c2得(m+n)2-2mn=4c2,根据椭圆的定义有m+n=2a,所以2mn=4a2-4c2,故mn=2b2,即mn=2,所以=·mn=1,设点M到x轴的距离为h,则×|F1F2|×h=1,又|F1F2|=2,故h=.二、填空题(每小题5分,共15分)6.已知椭圆中心在坐标原点,焦点在x轴上,椭圆与x轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为.【解析】由题意可得所以故b2=a2-c2=3,所以椭圆方程为+=1.答案:+=17.设P是椭圆+=1上的点,F1,F2分别为椭圆的左、右焦点,则|PF1|·|PF2|的最大值是.【解析】由题意知:|PF1|+|PF2|=2a=8,所以|PF1|·|PF2|≤==16,当且仅当|PF1|=|PF2|时取“=”,故|PF1|·|PF2|的最大值是16.答案:168.如图所示,F1,F2分别为椭圆+=1的左、右焦点,点P在椭圆上,△POF2是面积为的正三角形,则b2=.【解析】由题意=c2=,所以c=2,所以a2=b2+4.由题意得点P坐标为(1,),把x=1,y=代入椭圆方程+=1中得+=1,解得b2=...