温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(十)椭圆的简单几何性质(25分钟60分)一、选择题(每小题5分,共25分)1.已知F1,F2为椭圆+=1(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆离心率e=,则椭圆的方程是()A.+=1B.+=1C.+=1D.+=1【解析】选B.由题意知4a=16,即a=4,又因为e=,所以c=2,所以b2=a2-c2=16-12=4,所以椭圆的标准方程为+=1.2.(2015·西安高二检测)两个正数1,9的等差中项是a,等比中项是b且b>0,则曲线+=1的离心率为()A.B.C.D.【解析】选A.因为a==5,b==3,所以e==.3.(2015·怀化高二检测)过椭圆+=1的中心任作一直线交椭圆于P,Q两点,F是椭圆的一个焦点,则△PQF周长的最小值是()A.14B.16C.18D.20【解析】选C.如图设F为椭圆的左焦点,右焦点为F2,根据椭圆的对称性可知|FQ|=|PF2|,|OP|=|OQ|,所以△PQF的周长为|PF|+|FQ|+|PQ|=|PF|+|PF2|+2|PO|=2a+2|PO|=10+2|PO|,易知2|OP|的最小值为椭圆的短轴长,即点P,Q为椭圆的上下顶点时,△PQF的周长取得最小值10+2×4=18,故选C.4.设F1,F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【解析】选C.如图,△F2PF1是底角为30°的等腰三角形⇒|PF2|=|F2F1|=2=2c⇒e==.5.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为()A.B.C.D.【解析】选B.将x=-c代入椭圆方程可解得点P,故|PF1|=,又在Rt△F1PF2中∠F1PF2=60°,所以|PF2|=,根据椭圆定义得=2a,从而可得e==.【一题多解】选B.设|F1F2|=2c,则在Rt△F1PF2中,|PF1|=c,|PF2|=c.所以|PF1|+|PF2|=2c=2a,离心率e==.二、填空题(每小题5分,共15分)6.已知椭圆+=1的离心率e=,则m的值为__________.【解析】当焦点在x轴上时,a2=5,b2=m,所以c2=a2-b2=5-m.又因为e=,所以=,解得m=3.当焦点在y轴上时,a2=m,b2=5,所以c2=a2-b2=m-5.又因为e=,所以=,解得m=.故m=3或m=.答案:3或【误区警示】认真审题,防止丢解在求椭圆方程或利用方程研究椭圆性质时,一定要注意椭圆的位置是否确定,若没有确定,则应该有两解.7.已知椭圆的短半轴长为1,离心率0
0,所以a2>1,所以1