3.1变化率与导数3.1.1变化率问题3.1.2导数的概念1.理解函数在某点附近的平均变化率.(重点)2.了解导数的概念并会求函数在某点处的导数.(难点)3.了解平均变化率与瞬时变化率的关系.(易错点)[基础·初探]教材整理1变化率问题阅读教材P72~P74“思考”部分,完成下列问题.函数的变化率函数y=f(x)从x1到x2的平均变化率(1)定义式:=.(2)实质:函数值的改变量与自变量的改变量之比.(3)作用:刻画函数值在区间[x1,x2]上变化的快慢.判断(正确的打“√”,错误的打“×”)(1)Δx表示x2-x1是相对于x1的一个增量,Δx可以为零.()(2)Δy表示f(x2)-f(x1),Δy的值可正可负也可以为零.()(3)表示曲线y=f(x)上两点(x1,f(x1)),(x2,f(x2))连线的斜率.()【答案】(1)×(2)√(3)√教材整理2导数的概念阅读教材P74导数的概念~P75例1以上部分,完成下列问题.1.函数y=f(x)在x=x0处的瞬时变化率(1)定义式:lim=lim.(2)实质:瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值.(3)作用:刻画函数在某一点处变化的快慢.2.函数f(x)在x=x0处的导数函数y=f(x)在x=x0处的瞬时变化率称为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|,即f′(x0)=lim=lim.判断(正确的打“√”,错误的打“×”)(1)函数y=f(x)在x=x0处的导数值与Δx值的正、负无关.()(2)瞬时变化率是刻画某函数值在区间[x1,x2]上变化快慢的物理量.()(3)在导数的定义中,Δx,Δy都不可能为零.()(4)函数f(x)=x在x=0处的瞬时变化率为0.()【答案】(1)√(2)×(3)×(4)×[小组合作型]平均变化率(1)函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为______,当x0=2,Δx=0.1时平均变化率的值为________.(2)已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,-2+Δy),则=________.【自主解答】(1)函数y=f(x)=3x2+2在区间[x0,x0+Δx]上的平均变化率为===6x0+3Δx.当x0=2,Δx=0.1时,函数y=3x2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3.(2) Δy=f(-1+Δx)-f(-1)=-(-1+Δx)2+(-1+Δx)-[-(-1)2+(-1)]=-(Δx)2+3Δx,∴==-Δx+3.【答案】(1)6x0+3Δx12.3(2)-Δx+3求平均变化率的主要步骤1.计算函数值的改变量Δy=f(x2)-f(x1).2.计算自变量的改变量Δx=x2-x1.3.得平均变化率=.[再练一题]1.求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx都为,在哪一点附近平均变化率最大?【导学号:97792034】...