14.3公式法第1课时用平方差公式进行因式分解公教学目标【知识与能力】会用平方差公式进行因式分解.【过程与方法】经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,渗透数学的“互逆”、换元、整体的思想,感受数学知识的完整性.【情感态度价值观】在探究的过程中培养学生独立思考的习惯,在交流的过程中学会向别人清晰地表达自己的思维和想法,在解决问题的过程中让学生深刻感受到“数学是有用的”.教学重难点【教学重点】掌握公式法中的平方差公式进行分解因式.【教学难点】灵活运用公式法或已学过的提公因式法进行分解因式,正确判断因式分解的彻底性.教学过程一.情景导入,初步认知填空:(1)(x+5)(x-5)=________;(2)(3x+y)(3x-y)=________;(3)(3m+2n)(3m-2n)=________________它们的结果有什么共同特征?尝试将它们的结果分别写成两个因式的乘积:x2-25=________;9x2-y2=_______;9m2-4n2=______.【教学说明】对平方差公式进行复习,利于本节课的教学.二.思考探究,获取新知1.观察下列过程,谈谈你的感受.将多项式a2-b2进行因式分解: (a+b)(a-b)=a2-b2整式乘法a∴2-b2=(a+b)(a-b)因式分解【归纳结论】整式乘法公式的逆向变形得到分解因式的方法.这种分解因式的方法称为运用公式法.2.找特征a2-b2=(a+b)(a-b)(1)公式左边:(是一个将要被分解因式的多项式)被分解的多项式含有两项,且这两2项异号,并且能写成()2-()2的形式.(2)公式右边:(是分解因式的结果)分解的结果是两个底数的和乘以两个底数的差的形式.三.运用新知,深化理解1.见教材P99例1、例22.下列多项式能转化成()2-()2的形式吗?如果能,请将其转化成()2-()2的形式.(1)m2-81=m2-92;(2)1-16b2=12-(4b)2;(3)4m2+9;(4)a2x2-25y2=(ax)2-(5y)2;(5)-x2-25y2.3.下列各式中,能用平方差公式分解因式的是()A.a2+b2B.-a2+b2C.-a2-b2D.-(-a2)+b2答案:B4.(x+1)2-9(x-1)2解:原式=4(2x-1)(2-x)5.将下列各式分解因式(1)a2b2-a2c2=a2(b2-c2)=a2(b+c)(b-c);(2)-x5y3+x3y5=x3y3(-x2+y2)=x3y3(x+y)(-x+y)(3)(a+b)2-9(a-b)2=[(a+b)+3(a-b)][(a+b)-3(a-b)]=(a+b+3a-3b)(a+b-3a+3b)=(4a-2b)(4b-2a)=4(2a-b)(2b-a);(4)p4-1=(p2+1)(p2-1)=(p2+1)(p-1)(p+1).6.若a+b=2011,a-b=1,求a2-b2的值.解:a2-b2=(a+b)(a-b)=2011×1=20117.简便计...