凸函数的开题报告一、文献综述凸函数是一类重要的函数,它的概念最早见于Jensen[1905]著述中。它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论根底和有力工具。为了理论上的突破,加强它们在实践中的应用,产生了广义凸函数。凸函数有许多良好的性质,例如,其中一个很重要的性质就是:在凸集中,凸函数的任何局部最小也是全局最小。它在数学的许多领域中都有着广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论根底和有力工具。但是凸函数的局限性也很明显,因为在实际问题中,大量的函数都是非凸的。为了理论上的突破,加强它们在实践中的应用,60年代中期产生了凸分析,凸函数的概念也按多种途径进行推广,或对于抽象空间的推广,或对于上面提到的不等式的推广,然后提出了广义凸函数的概念。60年代后期,先是有Mangasarian把凸函数的概念推广到拟凸函数(quasi-convexfunctions)和伪凸函数(pseudo-convexfunctions)。我们知道,在数学规划的理论及算法中,函数的凸性只是一个充分条件,而不是必要条件。如何推广函数的凸性概念,使得在更广泛的函数范围内,凸函数的许多重要性质仍然得以保存,凸规那么的大多数结果能推广到非凸规那么,已构成了数学规划研究领域的当前趋势之一,所以研究广义凸函数的一些定义和性质就显得十分必要了。拟凸函数(quasi-convexfunctions)是一类非常重要的广义凸函数,已有大量文献对此作了研究,拟凸函数可以定义为:如果对任意及任意的,有,那么称为上的拟凸函数。先是杨新民教授给出了拟凸函数、严格拟凸函数及强拟凸函数的性质,讨论了他们之间的关系,得到了某些有意义的结论。拟凸函数的定义具有多种形式且相互之间有等价关系。同时又有许多专家研究拟凸函数的上半连续性和下半连续性。伪凸函数(pseudo-convexfunctions)是另一类重要的广义凸函数,其中强伪凸函数和严格伪凸函数尤其被数学工作者所研究。强伪凸函数恰好是二次函数的严格伪凸性的推广,所有关于二次函数严格伪凸的特征同样也是二次函数强伪凸的特征。二、立题背景及意义凸函数是一类重要的函数,它的概念最早见于Jensen[1905]著述中。它在纯粹数学和应用数学的众多领域中具有广泛的应用,现已成为数学规划、对策论、数理经济学、变分学和最优控制等学科的理论根底和有力工具。为了理论上的突破,加强它们在实践中的应用,产生了广义...