2022全程班零基础提前学作业4新浪微博@考研数学周洋鑫12022年一笑而过全程班“提前学”课程作业同步作业4考点3函数连续与间断【1】若函数1cos,0(),0xxfxaxbx−=在0x=处连续,则(A)12ab=.(B)12ab=−.(C)0ab=.(D)2ab=.解析:因为()fx在0x=连续,所以00lim()lim()(0)xxfxfxf+−→→==;由20001()1cos12lim()limlim,2xxxxxfxaxaxa+++→→→−===0lim()(0)xfxfb−→==;得12ba=,即12ab=.故选(A).【2】若2sin21,0(),0axxexfxxax+−==,在(,)−+上连续,则a=.解析:由初等函数在其定义区间内必连续可知,()fx在0x时必连续,因此仅需讨论0x=处连续,即()()0lim0xfxf→=.()220000sin21sin21limlimlimlimaxaxxxxxxexefxxxx→→→→+−−==+22aa=+=则2a=−.【3】设函数lncos(1),1,1sin()21,1.xxxfxx−−==问函数()fx在1x=处是否连续?若不连续,修改函数在1x=处的定义使之连续.解析:()()()111lncos1cos11limlimlim1sin1sin22xxxxxfxxx→→→−−−==−−2022全程班零基础提前学作业4新浪微博@考研数学周洋鑫2()21112lim1sin2xxx→−−=−()1111limlimcoscos2222xxxxxx→→−−−=−洛()22114lim1sin42xfx→=−−洛,则()fx在1x=处不连续修改定义:令()241f=−,则()fx在1x=处连续.【4】设函数32ln(1),0,arcsin()6,0,e1,0.sin4axaxxxxfxxxaxxxx+−==+−−问a为何值时,()fx在0x=处连续;a为何值时,0x=是()fx的可去间断点?解析:330003ln(1)lim()limlim61arcsin6xxxaxaxfxaxxx−−−→→→+===−−−()222222000111e12lim()limlimsin44axxxxaxaxoxxaxxaxfxxxx+++→→→++++−−+−−==()222220112lim244xaxoxax+→++==+.(1)当()()()00limlim0xxfxfxf+−→→==时,即()fx在0x=处连续.此时26246aa−=+=,则1−=a;(2)当()()()00limlim0xxfxfxf+−→→=时,即()fx在0x=为可去间断点.此时26246aa−=+,则2−=a;2022全程班零基础提前学作业4新浪微博@考研数学周洋鑫3考点4导数定义(1)【1】设()(1)(2)()fxxxxxn=+++,则(0)f=__________.解析:()()()()()00010limlim0xxfxfxxxnfxx→→−++==−()()()0lim12!xxxxnn→=+++=【2】设函数()fx在0x=处可导,(0)0,(0)ffb==,若函数()sin,0,(),0.fxaxxFxxAx+==在0x=处连续,则常数A=___________.解析:由于()Fx在0x=处连续,则()()0...