2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫12022考研数学全程班作业答案——《高分强化521》19第7章二重积分7.1二重积分定义与性质【156】求2411limsin22nnnijjinn→===.解:2411limsin22nnnijjinn→==21111limsin22nnnijijnnnn→===112001sin223xdxydy==【157】设()2222112lnxyIxydxdy+=+,()2221cos2xyIxydxdy+=++,()2231sinxyIxydxdy+=,则1I,2I,3I的大小关系为().(A)123III.(B)231III.(C)321III.(D)213III.解析:当2212xy+时,()220lnln2xy+,故103ln2I;()2221,,04cos20xyxyIxydxdy+=++,其中()22cos20xy++;利用奇偶性()2231=sin0xyIxydxdy+=,故132III,答案选B.7.2二重积分计算【158】设D:221xy+,求()22sincosddDxyxy+.解析:因为D关于直线yx=对称,所以有()(),dd,ddDDfxyxyfyxxy=.故()()2222sincosddsincosddDDxyxyyxxy=++()2222sincossinco1sd2dDxyyxxy++=+2dd2Dxy==.一笑而过考研数学2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫2【159】已知()()2212:194xyD+−+,求()53DIxydxdy=+=__________.解析:原式()5353DDDIxydxdyxSyS=+=+()5163266=−+=.【160】计算()22201limecosddxyrDxyxyr−→+,其中D为222xyr+.解析:由积分中值定理得()()22222ecosddecosxyDxyxyr−−+=+,(),D.故()()22222001limecosddlimecosxyrrDxyxyr−−→→+=+()2200limecos1−→→=+=.【161】设0a,()(),01,0,.axfxgx==若其他D表示全平面,则()()ddDIfxgyxxy=−=_____.解析:()()1120112202001dddddddDxyxxxaxIfxgyxxyaxyyaxa−+===−==.【162】求二重积分max,1ddDxyxy,其中(),02,02Dxyxy=.解析:如右图所示,将区域D分为3个部分:1D:10,202,xy2D:12,210,xyx3D:12,212.xyx由区域可加性,得123max,1ddmax,1ddmax,1ddmax,1ddDDDDxyxyxyxyxyxyxyxy=++123ddddddDDDxyxyxyxy=++12221110221ddddxxxyxxyy=++151912ln2ln2ln244=++−=+....