2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫12022考研数学全程班作业答案——《高分强化521》作业7第2章一元函数微分学2.2导数计算【52】已知()()()()()2,1nxfxfxfffxx==+(n个f),则()ndfxdx=.解析:()()121xfxfxx==+()()21212xfxffxx==+()()32213xfxffxx==+依规律可知:()21nxfxnx=+则:()()222322211212111nnxnxdfxnxdxnxnx+−+==++.【53】设()yfx=是由方程()321e210xyxyx++−++=确定的二阶导函数连续的函数,则()sin00tanlimxxxxfxdx→−=.解析:原式()()()32sinsin000001tan3limlimlimsincosxxxxxxxxxfxxfxdxfxdx→→→−−−===()20limsinxxfx→−=()()()000222limlimlimsinsin0xxxxfxfxf→→→−−−===此时,对隐函数方程两边同时求导得()2212e20xyyyyx+++−+=(1)方程两边再求导得()()222214e0xyyyyyxyy+++++−=(2)当0x=时,代入原方程得0y=当0x=,0y=时,代入(1)得()00y=当0x=,0y=,()00y=时,代入(2)得()04y=故原式1.2=−一笑而过考研数学2022考研数学全程班同步作业——《高分强化521》新浪微博@考研数学周洋鑫2【54】设()()22sin3,011,0xaxxfxbxxx+=+−,求参数,ab的值使()fx可导,并求()fx.解析:()22200110110limlimxxbxbxxfxx+++→→+−−+−==,若1b,则极限不存在,与题意矛盾;故必有1b=,此时()222200111120lim=lim2xxxxfxx+++→→+−==;又因为()()20sin30lim3xxaxfax−−→+==,则16a=;此时,()222211(2)sin33()cos3,06611,01xxxxxfxxxxx+++=+−+.【55】已知()3sinfxx=,()1,1x−,则0x=为()fx的().(A)可去间断点(B)跳跃间断点(C)无穷间断点(D)连续点解析:()33sin,01sin,10xxfxxx=−−()223sincos,013sincos,10xxxfxxxx=−−()23236sincos3sin,016sincos3sin,10xxxxfxxxxx−=−+−()3223226cos12sincos9sincos,016cos12sincos9sincos,10xxxxxxfxxxxxxx−−=−++−故()()00lim6xffx+++→==,()()00lim6xffx−−+→==−则0x=为()fx的跳跃间断点,应选(B).【56】设函数()fx四阶连续可导,()()00,00ff==,且()()()2,00,02fxxxFxfx==(Ⅰ)求()Fx(Ⅱ)判断()Fx在R上连续性解析:(Ⅰ)①求()Fx一笑而过考研数学2022...