2022全程班高分必刷800题答案解析新浪微博@考研数学周洋鑫12022年督学班高分必刷800题作业答案第七章多元函数微分学【329】解析:此题考查多元函数的连续、可导、可微。易知①即连续;②即一阶偏导数连续;③即偏导数存在;④即可微。对于多元函数,其一阶偏导数连续则函数可微;可微时则函数连续,故②④①,答案选B.【330】解析:由题意可知:00,00,0000,0limlim00xxxfxffxx,同理0,00yf.又322220000,0,0limlimxxxxfxyfdzxyxyxy,若取以2yx趋向于0,0,则上式=33242000limlimlimxxxxxxxxxx,故不存在.因此2200,0,0limxxfxyfdzxy不存在,则在0,0处不可微.【331】解析:(1)求,,,xyfxyfxy.当,0,0xy时,222222222112,2sin+cosxxfxyxxyxyxyxy2222221212sincosxxxyxyxy,当,0,0xy时,22001sin,00,00,0limlim00xxxxfxfxfxx,故2222221212sincos,,0,0,0,,0,0xxxxyxyxyxyfxyxy,2022全程班高分必刷800题答案解析新浪微博@考研数学周洋鑫2同理2222221212sincos,,0,0,0,,0,0yyyxyxyxyxyfxyxy.(2)判断,,,xyfxyfxy在0,0处的连续性.2222220000121lim,lim2sincosxxxxxxfxyxxyxyxy其中,当,0,0xy时,2212sin0xxy,而222221cosxxyxy不存在,因此,00lim,xxxfxy不存在,故不连续.同理,,yfxy在0,0处也不连续.【注】当,0,0xy时,221cosxy是振荡的,由于222xxy不趋向于0,因此不存在.(3)判断,fxy在0,0处的可微性.2222222222220000001sin,0,01limlimlimsin0xxxxxxxyfxyfdzxyxyxyxyxy因此,,fxy在0,0处的可微.【333】解析:zxarctanarctan2222212()1yyxxyxexyeyxx2arctanarctan222222()yyxxxyxexyexyxarctan(2),yxxyezyarctanarctan2222112()1yyxxyexyeyxx2arctanarctan222212()yyxxxyexyexyxarctan(2),yxyxe...