《自动化技术与应用》2024年第43卷第1期控制理论与应用ControlTheoryandApplicationsTechniquesofAutomation&Applications卷积神经网络的神华关键配件状态自动跟踪研究*卓卉(国家能源投资集团有限责任公司,北京100120)摘要:为避免关键配件异常状态带来的神华铁路货车运行安全隐患,提出基于卷积神经网络的神华关键配件状态自动跟踪方法。神华关键配件状态图像作为卷积神经网络的输入数据,经过卷积和池化操作后获得神华关键配件状态检测结果,并将其作为图像第一帧的状态,然后利用核相关滤波训练获得的回归模型估计图像下一帧的状态,实现神华关键配件状态自动跟踪。实验结果表明:该方法能够获得较为完整、清晰的神华关键配件状态图像;不同神华关键配件状态检测的MCC值均在0.8以上,且能够在异常状态发生之前得到状态检测结果;各时刻的神华关键配件状态跟踪结果与实际结果完全相同。关键词:卷积神经网络;神华关键配件;状态自动跟踪;CCD相机;核相关滤波;回归模型中图分类号:TP183文献标识码:A文章编号:1003-7241(2024)01-0071-04ResearchonAutomaticStateTrackingofShenhuaKeyPartsBasedonConvolutionalNeuralNetworkZHOUHui(NationalEnergyInvestmentCorporationLimited,Beijing100120China)Abstract:InordertoavoidthehiddendangerofShenhuarailwayfreighttrainoperationcausedbytheabnormalstateofkeyparts,theauto-maticstatetrackingmethodofShenhuakeypartsbasedonconvolutionalneuralnetworkisstudied.TheCCDcameraisusedtocollectthestateimageofShenhuakeyaccessories,whichisusedastheinputdataofconvolutionneuralnetwork.Afterconvolu-tionandpooling,thestatedetectionresultofShenhuakeyaccessoriesisobtained,anditisusedasthestateofthefirstframeoftheimage.Onthisbasis,theregressionmodelobtainedbynuclearcorrelationfiltertrainingisusedtoestimatethestateofthenextframeoftheimage,realizetheautomatictrackingofthestatusofShenhuakeyaccessories.TheexperimentalresultsshowthatthismethodcanobtainarelativelycompleteandclearstateimageofShenhuakeyparts.TheMCCvaluesofdifferentShen-huakeyaccessoriesareabove0.8,andthestatedetectionresultscanbeobtainedbeforetheabnormalstateoccurs.ThestatustrackingresultsofShenhuakeyaccessoriesateachtimeareexactlythesameastheactualresults.Keywords:convo...