高数强化1-3巩固练习《高数辅导讲义·严选题》P2-P4:9,19,20,21,22,23,24,30,31,32,33,34,35,36,37综合测试1.若0)(3sinlim6220xxfxxx,则40)(3limxxfx为(A)0.(B)3.(C)29.(D).2.520sin)1e(sinlim2xxxxIxx(A)0.(B)61.(C)81.(D)31.3.已知222201elim2xxxaxbxIx,则(A)5,2ab.(B)2,5ab.(C)2,0ab.(D)3,3ab.4.设,0,,0,)(,0,2,0,2)(2xxxxxfxxxxxg则))((lim0xfgx______.5.2cot0sinlimxxxIx______.6.21cos21limsincosxxxxIxx________.7.310(1cos)(1cos)(1cos)lim(1cos)nnxxxxIx.8.当n时,21113nnn的等价无穷小形式为e(e)αnβ,则α________,β________.9.设fx连续,且0()lim2xfxx,则2000arctan()dlim()dxxxxtttfxtt________.10.(06-3)设1sin(,),0,01arctanxyyyfxyxyxyx,求:(I)()lim(,)ygxfxy;(II)0lim()xgx.11.(02-3)求极限2000arctan(1)ddlim(1cos)xuxttuxx.12.(05-2)设函数()fx连续,且0)0(f,求极限000()()dlim()dxxxxtfttxfxtt.13.(01-3)已知()fx在(,)内可导,lim()exfx,limlim[()(1)]xxxxcfxfxxc求c的值.14.(02-2)设函数()fx在0x的某邻域内具有二阶连续导数,且(0)0,f(0)0,f(0)0.f证明:存在唯一的一组实数123,,,使得当0h时,123()(2)(3)(0)fhfhfhf是比2h高阶的无穷小.15.(06-2)试确定常数,,ABC的值,使得23e(1)1()xBxCxAxox,其中3()ox是当0x时比3x高阶的无穷小量.拓展提升1.若()[]fxxx,则极限0()dlimxxfttx________.2.求极限:1elim(1)xxxxxx3.求极限:1111limxxxxax,其中常数0a.4.求极限:2320ecoscos3limln(1sin)xxxxx5.求极限:2sin30(2sin)lim2xxxxx.6.求极限:02(sin)ln(lim1)ln(1)xxxxxxxxx.7.求极限:1113603()i(m)lxxxxxx.8.求极限:22e240cos(e)elimxxxxxx.9.求极限:2220cos2e12limln(1)xxxxxx.10.求极限sin40sin(e1)(e1)limsin3xxxx.11.设320lim(sin3)0xxxaxb,求,ab.12.设2lim()0xxaxbcxd,求,,,abcd.