文章编号:1002-2082(2024)01-0089-10基于多尺度残差注意力网络的水下图像增强陈清江,王炫钧,邵菲(西安建筑科技大学理学院,陕西西安710055)摘要:针对水下图像由水的散射、吸收引起的色偏、色弱、信息丢失问题,提出了一种基于多尺度残差注意力网络的水下图像增强算法。该网络引入了改进的UNet3+-Avg结构与注意力机制,设计出多尺度密集特征提取模块与残差注意力恢复模块,以及由Charbonnier损失和边缘损失相结合的联合损失函数,使该网络得以学习到多个尺度的丰富特征,在改善图像色彩的同时又可保留大量的物体边缘信息。增强后图像的平均峰值信噪比(PSNR)达到23.63dB、结构相似度(SSIM)达到0.93。与其他水下图像增强网络的对比实验结果表明,由该网络所增强的图像在主观感受与客观评价上都取得了显著的效果。关键词:图像处理;水下图像增强;多尺度特征提取;密集连接;注意力机制中图分类号:TP391文献标志码:ADOI:10.5768/JAO202445.0102003UnderwaterimageenhancementbasedonmultiscaleresidualattentionnetworksCHENQingjiang,WANGXuanjun,SHAOFei(SchoolofScience,Xi'anUniversityofArchitectureandTechnology,Xi'an710055,China)Abstract:Anunderwaterimageenhancementalgorithmbasedonmulti-scaleresidualattentionnetworkwasproposedfortheproblemsofcolorshift,colorfadingandinformationlossofunderwaterimagescausedbywaterscatteringandabsorption.AnimprovedUNet3+-Avgstructureandattentionmechanismwasintroducedbythenetwork,andthemulti-scaledensefeatureextractionmoduleaswellastheresidualattentionrecoverymoduleweredesigned.Inaddition,ajointlossfunctioncombiningCharbonnierlossandedgelossenabledthenetworktolearnrichfeaturesatmultiplescales,improvingtheimagecolorwhileretainingalargeamountofobjectedgeinformation.Theaveragepeaksignal-to-noiseratio(PSNR)oftheenhancedimagesreaches23.63dBandthestructuralsimilarityratio(SSIM)reaches0.93.Experimentalresultswithotherunderwaterimageenhancementnetworksshowthattheimagesenhancedbythisnetworkachievesignificantresultsinbothsubjectiveperceptionandobjectiveevaluation.Keywords:imageprocessing;underwaterimageenhancement;multi-scalefeatureextraction;denseconnectivity;attentionmechanism引言随着陆地资源的枯竭与科...