第3卷第1期2024年1月信息对抗技术InformationCountermeasureTechnologyVol.3No.1Jan.2024引用格式:李剑鹏,苏楠.基于局部空间特征引导的表情识别算法[J].信息对抗技术,2024,3(1):46-56.[LIJianpeng,SUNan.Expressionrecognitionalgorithmguidedbylocalspatialfeatures[J].InformationCountermeasureTechnology,2024,3(1):46-56.(inChinese)]基于局部空间特征引导的表情识别算法李剑鹏,苏楠*(清华大学电子工程系,北京100084)摘要面部表情识别在计算机视觉任务中受到越来越多的关注,由于真实场景中的表情往往包含着大量由姿态、年龄、图像质量、标注等因素带来的噪声,大大增加了类内变化,给表情的分类任务带来了很大的困难。现有的基于此类问题的研究往往聚焦于数据本身,通过对数据进行筛选或者扩大模型接受的数据类型的形式提高识别能力,没有考虑到卷积网络本身对图像特征关注的局限性。针对该问题,提出了一种基于局部空间特征引导的卷积神经网络,对于特征图的某部分像素点进行强调,引导卷积网络的深层特征图能够关注到多个对分类有效的局部面部区域,同时使用对数据重标记的形式抑制由标签错误导致的噪声问题。经过在多个公开的表情识别数据集中测试,并与多个同类方法对比,所提方法具有较好的识别效果。关键词面部表情识别;卷积神经网络;特征图可视化;空间特征聚合中图分类号TP391.4文章编号2097-163X(2024)01-0046-11文献标志码ADOI10.12399/j.issn.2097-163x.2024.01.005ExpressionrecognitionalgorithmguidedbylocalspatialfeaturesLIJianpeng,SUNan*(DepartmentofElectronicEngineering,TsinghuaUniversity,Beijing100084,China)AbstractFacialexpressionrecognitionhasreceivedincreasingattentionincomputervisiontasks.Inreal-worldscenarios,facialexpressionsoftencontainasignificantamountofnoiseintroducedbyfactorssuchaspose,age,imagequality,andannotation,whichhavegreatlyincreasedintra-classvariationandhaveposedsignificantchallengesforfacialexpressionclas-sificationtasks.Theexistingresearchesaddressingthisproblemoftenfocusonthedatait-self,improvingrecognitioncapabilitiesbyfilteringorexpandingthetypesofdataacceptedbythemodels,withoutconsideringthelimitationsoftheconvolutionalnetworksinattendingtoimagefeatures.Toaddressthisissue,thispaperproposedaconvolutionalneuralnetwork(CNN)basedonlocalspa...