1Example16TitleCantileverbeamsubjectedtovariousstaticloadsDescriptionAcantileverbeamissubjectedtounitforcesatthefreeend.Threeorthogonaldirectionunitforcesandaunittorsionareappliedindividually.Thebeamismodeledwithdifferentmeshgeometries.VerificationExample2StructuralgeometryandanalysismodelExample603ModelAnalysisType3-DstaticanalysisUnitSystemin,lbfDimensionLength6.0inDepth0.2inThickness0.1inElementPlateelement(Thicktype)MaterialModulusofelasticityE=1.0×107psiPoisson’sratioν=0.3ElementPropertyMesh;Case1(RegularMesh)a×b=1.0in×0.2inCase2(TrapezoidalMesh)angle=45°Case3(ParallelogrammicMesh)angle=45°BoundaryConditionNodes1,15and29;ConstrainDx,Dy,Dz,RxandRz(Hingesupports)Nodes2,16and30;ConstrainDx,Dy,RxandRz.(Rollersupports)VerificationExample4LoadCaseRefertothefiguresshownabove.LoadCase1;TensileforcesareappliedtothefreeendintheXdirection.2@P=2@0.5lbfLoadCase2;Out-of-planeforcesareappliedtothefreeendinthe-Ydirection.2@P=2@0.5lbfLoadCase3;In-planeforcesareappliedtothefreeendinthe-Zdirection.2@P=2@0.5lbfLoadCase4;Torsionisappliedtothefreeendaboutthe-Xdirection.T=Depth×P=0.2in×5lbfResultsDeformedshapeofthestructure:LoadCase1Example605Deformedshapeofthestructure:LoadCase2Deformedshapeofthestructure:LoadCase3VerificationExample6Displacements(Loadcase4)ComparisonofResultsUnit:inDisplacementLoadCaseLoadTypeMeshCaseTheoreticalSAP2000MIDAS/Gen13.0×10-53.0×10-53.0×10-523.0×10-53.0×10-53.0×10-51Tension(δX)33.0×10-53.0×10-53.0×10-510.43210.42630.426320.43210.42660.42662Out-of-planeforce(δY)30.43210.42660.422610.10810.10720.107420.10810.02280.02403In-planeforce(δZ)30.10810.08030.086010.03210.02330.023320.03210.02330.02334Torsion(δX)30.03210.02330.0233Example607ReferencesMacNealR.H.andHarder,R.C.,“ProposedStandardSetofProblemstoTestFiniteElementAccuracy”,FiniteElementsinAnalysisandDesign1(1985),pp.3-20,NorthHolland.“SAP90,ASeriesofComputerProgramsfortheFiniteElementAnalysisofStructures,StructuralAnalysisVerificationManual”,ComputerandStructures,Inc.,1992,Example10.