文章编号:1002-2082(2024)02-0430-08基于MCRASN的遥感影像变化检测谢国波,廖文康,林志毅,张家源(广东工业大学计算机学院,广东广州510000)摘要:为了提升经配准高分辨率遥感影像对变化检测的精度,基于ChangeFormer提出了一种将移动卷积与相对注意力相结合的孪生网络(mobileconvolutionandrelativeattentionSiamesenetwork,MCRASN)。该网络以垂直布局结合移动卷积和相对注意力,构建多阶段组合编码器替换原网络编码器,高效地捕捉所需的多尺度细节特征和像素间相互关系信息,改进差异模块为1个可学习的距离度量模块进行距离计算,同时通过引入EFL(equalizedfocalloss)损失函数解决数据集正负样本失衡的问题以实现精确的变化检测。实验结果表明,所提出的MCRASN算法在LEVIR-CD数据集上具有更好的变化检测性能,其精确率、召回率、F1得分和总体精度分别为93.94%、89.26%、91.54%和99.18%,优于先前的多种检测方法。关键词:变化检测;孪生网络;移动卷积;相对注意力;距离计算中图分类号:TN919.81;TP391.4文献标志码:ADOI:10.5768/JAO202445.0203005RemotesensingimageschangedetectionbasedonMCRASNXIEGuobo,LIAOWenkang,LINZhiyi,ZHANGJiayuan(SchoolofComputerScience,GuangdongUniversityofTechnology,Guangzhou510000,China)Abstract:Inordertoimprovetheaccuracyofchangedetectioninco-registeredhigh-resolutionremotesensingimages,aSiamesenetworkcombiningmobileconvolutionandrelativeattention(MCRASN)wasproposedbasedonChangeFormer.Amulti-stagecombinedencoderwasconstructedtoreplacetheoriginalnetworkencoderbyusingverticallayoutcombinedwithmobileconvolutionandrelativeattentiontoefficientlycapturetherequiredmulti-scaledetailedfeaturesandpixelcorrelationinformation,andthedifferencemodulewasimprovedtobealearnabledistancemetricmodulefordistancecalculation.Atthesametime,theequalizedfocalloss(EFL)lossfunctionwasintroducedtosolvetheproblemofimbalancebetweenpositiveandnegativesamplesinthedatasettoachieveaccuratechangedetection.TheexperimentalresultsshowthattheproposedMCRASNmethodhasbetterchangedetectionperformanceontheLEVIR-CDdataset,withprecision,recall,F1scoreandoverallaccuracyof93.94%,89.26%,91.54%and99.18%,respectively,whichissuperiortopreviousmethods....