DOI:10.11991/yykj.202304030网络出版地址:https://link.cnki.net/urlid/23.1191.U.20231218.0917.002基于目标检测的室内动态场景同步定位与建图郭培涛,席志红哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001摘要:为了提高室内动态场景下定位与建图的准确性与实时性,提出了一种基于目标检测的室内动态场景同步定位与建图(simultaneouslocalizationandmapping,SLAM)系统。利用目标检测的实时性,在传统ORB_SLAM2算法上结合YOLOv5目标检测网络识别相机图像中的动态物体,生成动态识别框,根据动态特征点判别方法只将识别框内动态物体上的ORB特征点去除,利用剩余特征点进行相机位姿的估计,最后建立只含静态物体的稠密点云地图与八叉树地图。同时在机器人操作系统(robotoperatingsystem,ROS)下进行仿真,采用套接字(Socket)通信方式代替ROS中话题通信方式,将ORB_SLAM2算法与YOLOv5目标检测网络相结合,以提高定位与建图的实时性。在TUM数据集上进行多次实验结果表明,与ORB_SLAM2系统相比,本文系统相机位姿精确度大幅度提高,并且提高了每帧跟踪的处理速度。关键词:定位与建图系统;目标检测;室内动态环境;ORB特征点;位姿估计;稠密点云地图;八叉树地图;机器人操作系统中图分类号:TP242文献标志码:A文章编号:1009−671X(2024)02−0076−07IndoordynamicsimultaneouslocalizationandmappingbasedonobjectdetectionGUOPeitao,XIZhihongCollegeofInformationandCommunicationEngineering,HarbinEngineeringUniversity,Harbin150001,ChinaAbstract:Inordertoimprovetheaccuracyandreal-timeoflocationandmappinginindoordynamicscenes,asimultaneouslocalizationandmapping(SLAM)systemforindoordynamicscenesbasedontargetdetectionwasproposed.Usingthereal-timepropertyoftargetdetection,thedynamicobjectsinthecameraimagearerecognizedonthebasisofthetraditionalORB-SLAM2algorithmiscombinedwithYOLOv5targetdetectionnetwork,generatingadynamicrecognitionbox.Accordingtothedynamicfeaturepointdiscriminationmethod,onlytheORBfeaturepointsonthedynamicobjectintherecognitionboxareremoved,andthecamerapositionandorientationareestimatedusingtheremainingfeaturepoints.Finally,thedensepointcloudmapandoctreemapcontainingonlystaticobjectsareestablished.Atthesametime,thesimulationiscarriedoutunder...