印制电路信息2024No.3智能制造IntelligentManufacturing基于机器学习的PCB缺陷检测与分类方法研究李娟(沪士电子有限公司,江苏昆山215301)摘要印制电路板(PCB)在制造过程中难免会产生各种缺陷。为了提高生产效率和产品质量,针对PCB制造中常见的缺陷进行检测与分类。通过构建深度学习模型,采用图像处理技术,对PCB图像进行全面而高效的缺陷检测。通过大量的训练数据,模型能够学习各类缺陷的特征,包括但不限于短路、断路、焊接不良等。使用举例说明和推导论证等方法对PCB缺陷进行分类研究,在深度学习模型的巧妙构建和分类算法的优化应用相辅相成的应用基础上,为提高生产效率和产品质量提供了可行的解决方案,推动了PCB制造业智能化方向的发展。关键词机器学习;PCB缺陷检测;深度学习;分类算法中图分类号:TN41文献标志码:A文章编号:1009⁃0096(2024)03⁃0057⁃03ResearchonPCBdefectdetectionandclassificationbasedonmachinelearningLIJuan[WUSPrintedCircuit(Kunshan)Co.,Ltd.,Kunshan215301,Jiangsu,China]AbstractPrintedcircuitboard(PCB)inthemanufacturingprocesswillinevitablyproduceavarietyofdefects.Inordertoimproveproductionefficiencyandproductquality,detectionandclassificationshouldbedoneforthecommondefectsinPCBmanufacturing.ThemainpurposeofthispaperistostudyhowtoconstructadeeplearningmodelandadoptimageprocessingtechnologytocarryoutcomprehensiveandefficientdefectdetectiononPCBimages.Usingalargeamountoftrainingdata,themodelcanlearnthecharacteristicsofvariousdefects,includingbutnotlimitedtoshortcircuit,opencircuit,poorwelding,etc.TheclassificationofPCBdefectsisstudied,anditsmethodsareillustratedwithexamples,derivationanddemonstration.Onthebasisoftheingeniousconstructionofdeeplearningmodelsandtheoptimizationapplicationofclassificationalgorithmscomplementingeachother,itprovidesfeasiblesolutionsareprovidedforimprovingproductionefficiencyandproductquality,promotingthedevelopmentofPCBmanufacturingindustryinthedirectionofintelligence.Keywordsmachinelearning;printedcircuitboard(PCB)defectdetection;deeplearning;classificationalgorithm作者简介:李娟(1983—),女,助理工程师,硕士,主要研究方向为基于机器学习的PCB缺陷检测与分类方法...