文章编号:1002-2082(2024)01-0079-10基于改进YOLOv4的低慢小无人机实时探测算法吴璇,张海洋,赵长明,李志朋,王元泽(北京理工大学光电学院,北京100081)摘要:针对低慢小无人机探测任务中精度不高、在嵌入式平台上部署实时性能差的问题,提出了一种基于改进YOLOv4的小型无人机目标检测算法。通过增加浅层特征图、改进锚框、增强小目标,提高网络对小目标的检测性能,通过稀疏训练和模型修剪,大大缩短了模型运行时间。在1080Ti上平均精度(mAP)达到85.8%,帧率(FPS)达75frame/s,实现了网络轻量化。该模型部署在Xavier边缘计算平台上,可实现60frame/s的无人机目标检测速度。实验结果表明:与YOLOv4和YOLOv4-tiny相比,该算法实现了运行速度和检测精度的平衡,能够有效解决嵌入式平台上的无人机目标检测问题。关键词:低慢小无人机;目标检测;YOLOv4;剪枝;嵌入式中图分类号:TN201文献标志码:ADOI:10.5768/JAO202445.0102002ImprovedYOLOv4forreal-timedetectionalgorithmoflow-slow-smallunmannedaerialvehiclesWUXuan,ZHANGHaiyang,ZHAOChangming,LIZhipeng,WANGYuanze(SchoolofOpticsandPhotonics,BeijingInstituteofTechnology,Beijing100081,China)Abstract:Inordertosolvethelowaccuracyinlow-slow-smallunmannedaerialvehicles(UAVs)missiononembeddedplatformanddeploymentproblemofpoorreal-timeperformance,asmallUAVtargetdetectionalgorithmbasedonimprovedYOLOv4wasproposed.Byincreasingtheshallowcharacteristicfigure,improvingtheanchor,enhancingthesmalltarget,andthedetectionperformanceofnetworkforsmalltargetwasimproved,throughsparsetrainingandmodelpruning,themodelrunningtimewasgreatlyreduced.Theaverageaccuracy(mAP)reaches85.8%onthe1080Ti,andtheframerate(FPS)reaches75frame/s,whichachievingnetworklightweight.ThislightweightmodelwasdeployedontheXavieredgecomputingplatform,whichcouldachievetheUAVtargetdetectionspeedof60frame/s.Experimentalresultsshowthat,incomparedwithYOLOv4andYOLOv4-TINY,thisalgorithmachievesthebalanceofrunningspeedanddetectionaccuracy,andcaneffectivelysolvetheproblemofUAVtargetdetectiononembeddedplatform.Keywords:low-slow-smallunmannedaerialvehicles;targetdetection;YOLOv4;pruning;embeddedIntroductionWiththerapiddevelopmen...