“语义通信”专题1基于大语言模型的语义通信:现状,挑战与展望王衍虎,郭帅帅(山东大学,山东济南250061)【摘要】语义通信有望成为下一代无线网络关键技术之一。但现有语义通信方案仍面临几个问题,如语义难以数学建模与优化、系统语义理解能力有限。大语言模型的出现为解决这些问题提供了可能性。首先回顾了基于深度学习的语义通信,接着分析了将大语言模型应用于语义通信的优势,包括在语义理解和生成等方面的突出表现。随后详细介绍了基于大语言模型的语义通信的最新进展,展示了该技术在提升系统的语义解析能力、提高信息传输效率方面的显著成果。然而,这种方法仍面临一些开放性问题,包括计算和资源需求、适应性和泛化性、大模型幻觉、以及数据隐私和安全性等挑战。最后,讨论了基于大语言模型的语义通信可能的应用场景,如数据爆发式传输、人机通信以及在恶劣环境下的通信,展示了其在多个领域中的潜在价值和广泛应用前景。【关键词】语义通信;大语言模型;语义校正doi:10.3969/j.issn.1006-1010.20240111-0001文献标志码:A文章编号:1006-1010(2024)02-0016-06引用格式:王衍虎,郭帅帅.基于大语言模型的语义通信:现状,挑战与展望[].移动通信,2024,48(2):16-21.WANGYanhu,GUOShuaishuai.LargeLanguageModel-BasedSemanticCommunications:Status,Challenges,andProspects[J].MobileCommunications,2024,48(2):16-21.[Abstract]Semanticcommunicationsareexpectedtobeakeytechnologyfornext-generationwirelessnetworks.However,currentsemanticcommunicationapproachesstillfaceseveralissues,suchasdifficultiesinmodelingandoptimization,andlimitedsemanticunderstanding,Theemergenceoflargelanguagemodelsoffersthepotentialtoaddresstheseproblems,Thispaperfrstreviewsdeeplearning-basedsemanticcommunicationsandthenanalyzestheadvantagesofapplyinglargelanguagemodelstosemanticcommunications,includingtheoutstandingperformanceinsemanticunderstandingandgeneration.Subsequently,thelatestdevelopmentsinsemanticcommunicationsbasedonlargelanguagemodelsareintroducedindetail,demonstratingthesignificantachievementsinenhancingsystemsemanticparsingcapabilitiesandimprovinginformationtransmissionefficiency.However,thisapproachstillencounterssomeopenchallenges,includingcomputationalandresourcere...