“RIS辅助的通感一体化”专题1基于神经网络的RIS通感一体编码优化方法关东方",卞小贝1*,谷紫洋,陈冠潮",安康²(1.国防科技大学电子科学学院,湖南长沙410073;2.国防科技大学第六十三研究所,江苏南京210007)【摘要】基于RIS的通感一体技术可以通过DOA和波束成形有效提升系统通信和感知的整体性能。针对RIS编码优化中计算复杂度大和设计自由度受限等问题,提出基于神经网络的RIS通感一体编码优化方法。该方法利用基于异步时空编码超表面的神经网络,将-12dB的低信噪比条件下的DOA估计误差降至0.22;并利用以自由形式设计指标为导向的串联神经网络,实现波束成形高精度优化,误差仅为0.025。该方法为RIS通感一体编码优化提供了低复杂度和高实时性的解决方案。【关键词】智能超表面;通感一体化;深度学习;循环神经网络;DOA估计;编码优化doi:10.3969/j.issn.1006-1010.20240410-0001中图分类号:TN929.5文献标志码:A文章编号:1006-1010(2024)04-0054-07引用格式:关东方,下小贝,谷紫洋,等.基于神经网络的RIS通感一体编码优化方法[].移动通信,2024,48(4):54-60.GUANDongfang,BIANXiaobei,GUZiyang,etal.NeutralNetwork-basedRISCodingOptimizationMethodforISAC[JJ.MobileCommunications,2024,48(4):54-60.NeutralNetwork-basedRISCodingOptimizationMethodforISACGUANDongfang',BIANXiaobei',GUZiyang,CHENGuanchao',ANKang(1.CollegeofElectronicScienceandTechnology,NationalUniversityofDefenseTechnology,Changsha410073,China;2.Sixty-thirdResearchInstitute,NationalUniversityofDefenseTechnology,Nanjing210007,China)[Abstract]Theintegratedsensingandcommunication(ISAC)technologybasedonreconfigurableintelligentsurface(RIS)caneffectivelyenhancetheoverallsystemcommunicationandsensingcapabilitiesthroughdirectionofarrival(DOA)andbeamformingtechniques.ToaddressthechallengesofhighcomputationalcomplexityandconstraineddesignflexibilityinRISencodingoptimization,thispaperproposesaneuralnetwork-basedapproachforcodingoptimizationinRIS-enabledISACsystems.Thisapproachemploysaneuralnetworkbasedonanasynchronousspace-timecodingmetasurfacetoreducetheDOAestimationerrorto0.22°underlowsignal-to-noiseratio(SNR)conditionsof-12dB.Furthermore,byutilizingacascadedneuralnetworkdrivenbyfree...