1“互联网+”时代的出租车资源配置摘要“互联网+”时代实现了乘客与出租车司机之间的信息互通。本文通过建立合理的数学模型,对出租车资源配置问题进行了分析。针对问题一,通过确立里程利用率和供求比率两个指标,我们建立了供求匹配模型。从供给角度和需求角度出发,求得里程利用率和供求比率的理想值。将这两个指标抽象为二维空间中的坐标,通过实际点与平衡点之间的距离来判断综合不匹配程度。运用此模型,我们求解出高峰时段、常规时段、市区和郊区的综合不匹配程度分别为:2.4103,2.1056,3.2238,2.1493,从而分析得出高峰时段的供求匹配程度优于常规时段,郊区的供求匹配程度优于市区。针对问题二,我们以滴滴和快的打车公司为例,分别计算出各公司对乘客和司机的补贴金额,通过确定意愿半径和打车软件使用人数比例这两个指标,建立了缓解程度判断模型。接着,我们对未使用打车软件及使用打车软件两种情况进行了对比分析,分别得出两种情况下的人均出租车占有率,以此判断补贴方案对于“打车难”的缓解程度。最终求得各公司缓解率的分布范围为-0.02~0.37,说明各公司出租车的补贴方案对缓解“打车难”有一定帮助,但效果不大。针对问题三,我们综合考虑了空间和时间因素,将城市划分为若干区域,制定了分区域动态实时补贴方案。以各区域内的乘客数与出租车数之比为基准,以总量一定为原则,实时确定了各个区域的补偿金额。然后以西安市为例,我们将城市划分为9个区域,以9月11日各时段的出租车与乘客数据为基础,得出分区域动态实时补贴方案,结果显示补偿金额在2~10元之间,高峰时段补贴金额要高于常规时段,人多车少区域的补贴金额要高于人少车多区域。继而通过计算机仿真,我们计算得出城市出租车的供求匹配度提高了3.84%,验证了方案的合理性。综上所述,本文通过建立供求匹配模型,缓解程度判断模型,对出租车资源的供求匹配程度和补贴方案进行了分析,并设计了分区域动态实时补贴方案,这对于今后的实际生产和应用具有重要的参考价值。关键词:出租车资源配置供求匹配模型缓解程度判断模型分区域动态实时补贴方案2一、问题重述1.1背景资料与条件出租车是市民出行的重要交通工具之一,“打车难”是人们关注的一个社会热点问题。随着“互联网+”时代的到来,有多家公司依托移动互联网建立了打车软件服务平台,实现了乘客与出租车司机之间的信息互通,同时推出了多种出租车的补贴方案。1.2需要解决的问题(1)试建立合理的指标,并分析不...