2018年高考理科数学知识与方法大全·第1页(共64页)一、集合与简易逻辑、不等式1.集合的有关概念(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a属于集合A,记作a∈A;若b不属于集合A,记作b∉A.(3)集合的表示方法:列举法、描述法、图示法.2.常用数集及记法数集自然数集正整数集整数集有理数集实数集记法NN*或N+ZQR3.集合间的基本关系表示关系文字语言记法子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A真子集集合A是集合B的子集,并且B中至少有一个元素不属于AAB或BA集合间的基本关系相等集合A的每一个元素都是集合B的元素,集合B的每一个元素也都是集合A的元素A⊆B且B⊆A⇔A=B空集是任何集合的子集⊆A空集空集是任何非空集合的真子集B且B≠集合子集个数的判定含有n个元素的集合,其子集的个数为2n;真子集的个数为2n-1(除集合本身);非空真子集的个数为2n-2(除空集和集合本身,此时n≥1).(1)注意空集的特殊性:空集是任何集合的子集,是任何非空集合的真子集.(2)任何集合的本身是该集合的子集,在列举时千万不要忘记.4.集合的三种基本运算符号表示图形表示符号语言集合的并集A∪BA∪B={x|x∈A,或x∈B}集合的交集A∩BA∩B={x|x∈A,且x∈B}集合的补集若全集为U,则集合A的补集为∁UA∁UA={x|x∈U,且x∉A}5.集合的三种基本运算的常见性质(1)A∩A=A,A∩=,A∪A=A,A∪=A.(2)A∩∁UA=,A∪∁UA=U,∁U(∁UA)=A.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB⇔A∩(∁UB)=.6.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.7.四种命题及相互关系8.四种命题的真假关系2018年高考理科数学知识与方法大全·第2页(共64页)(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.判断命题真假的思路方法(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,把它写成“若p,则q”的形式,然后联系其他相关的知识,经过逻辑推理或列举反例来判定.(2)一个命题要么真,要么假,二者必居其一.当一个命题改写成“若p,则q”的形式之后,判断这个命题真假的方法:①若由“p”经过逻辑推理,得出“q”,则可判定“若p,则q”是真命题;②判定“若p,则q”是假命题,只需举一反例即可.写一个命题的其他三种命题时的注意...