-1-3.2.1双曲线及其标准方程学科网-2-课标阐释思维脉络1.了解双曲线的定义.(数学抽象)2.掌握双曲线的几何图形与标准方程.(直观想象)3.会求双曲线的标准方程.(数学运算)-3-激趣诱思知识点拨如图①所示,取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1、F2上,把笔尖放在点M处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线,这就是双曲线的一支.把两个固定点的位置交换,如图②所示,类似可以画出双曲线的另一支.这两条曲线合起来叫做双曲线.双曲线上的点到两定点F1,F2的距离有何特点?-4-激趣诱思知识点拨一、双曲线的定义1.定义:一般地,我们把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.集合语言表达式双曲线就是集合P={M|||MF1|-|MF2||=2a,0<2a<|F1F2|}.-5-激趣诱思知识点拨名师点析1.若将定义中差的绝对值中的绝对值符号去掉,则点M的轨迹为双曲线的一支,具体是哪一支,取决于|MF1|与|MF2|的大小.(1)若|MF1|>|MF2|,则|MF1|-|MF2|>0,点M的轨迹是靠近定点F2的那一支;(2)若|MF1|<|MF2|,则|MF2|-|MF1|>0,点M的轨迹是靠近定点F1的那一支.2.双曲线定义中的常数必须要大于0且小于|F1F2|.(1)若定义中的常数等于|F1F2|,此时动点轨迹是分别以F1和F2为端点的两条方向相反的射线(包括端点).(2)若定义中的常数大于|F1F2|,此时动点轨迹不存在.(3)若定义中的常数为0,此时动点轨迹为线段F1F2的垂直平分线.-6-激趣诱思知识点拨微练习1已知平面上定点F1,F2及动点M,命题甲:||MF1|-|MF2||=2a(a为常数),命题乙:点M的轨迹是以F1,F2为焦点的双曲线,则甲是乙的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件答案:B-7-激趣诱思知识点拨微练习2平面内到点F1(6,0)的距离减去到点F2(-6,0)的距离之差等于12的点的集合是()A.双曲线B.双曲线的一支C.两条射线D.一条射线解析:设动点为P,则|PF1|-|PF2|=12=|F1F2|,点P的轨迹为以F2为端点的一条射线.答案:D-8-激趣诱思知识点拨二、双曲线的标准方程-9-激趣诱思知识点拨名师点析1.双曲线的标准方程是指当双曲线在标准位置时的方程,所谓标准位置,就是指双曲线的中心在坐标原点,对称轴为坐标轴.2.两种双曲线x2a2−y2b2=1,y2a2−x2b2=1(a>0,b>0)的相同点是:它们的形状、大小都相同,都有a>0,b>0,a2+b2=c2;不同点是:两种双曲线的位置不同,它们的焦点坐标也不同.3.双曲线的焦点在x轴上⇔标准方...