2.3二次函数与一元二次方程、不等式数学(人教版)必修第一册第二章一元二次函数、方程和不等式第2课时一元二次不等式的应用学习目标核心素养1.掌握一元二次不等式的实际应用(重点).2.理解三个“二次”之间的关系.3.会解一元二次不等式中的恒成立问题(难点).1.通过分式不等式的解法及不等式的恒成立问题的学习,培养数学运算素养.2.借助一元二次不等式的应用培养数学建模素养.自主预习探新知1.分式不等式的解法主导思想:化分式不等式为整式不等式类型同解不等式ax+bcx+d>0(<0)(其中a,b,c,d为常数)法一:ax+b>0<0cx+d>0或ax+b<0>0cx+d<0法二:(ax+b)(cx+d)>0(<0)ax+bcx+d≥0(≤0)法一:ax+b≥0≤0ax+d>0或ax+b≤0≥0cx+d<0法二:ax+bcx+d≥0≤0cx+d≠0ax+bcx+d>k0与(x-3)(x+2)>0等价吗?将x-3x+2>0变形为(x-3)(x+2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.2.(1)不等式的解集为R(或恒成立)的条件不等式ax2+bx+c>0ax2+bx+c<0a=0b=0,c>0b=0,c<0a≠0a>0Δ<0a<0Δ<0(2)有关不等式恒成立求参数的取值范围的方法若ax2+bx+c≤k恒成立⇔ymax≤k设二次函数y=ax2+bx+c若ax2+bx+c≥k恒成立⇔ymin≥k3.从实际问题中抽象出一元二次不等式模型的步骤(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).(3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.1.若集合A={x|-1≤2x+1≤3},B=xx-2x≤0,则A∩B等于()A.{x|-1≤x<0}B.{x|0