1原创精品资源学科网独家享有版权,侵权必究!4.4.3不同函数增长的差异【学习目标】课程标准学科素养1.尝试将实际问题转化为函数模型.2.了解指数函数、对数函数及一次函数等函数模型的增长差异.3.会根据函数的增长差异选择函数模型.1.数学建模2.数学运算3.直观想象【自主学习】1.函数模型一般地,设自变量为x,函数为y,并用x表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓建立数学模型.2.三种常见函数模型的增长差异指数函数对数函数一元一次函数解析式y=ax(a>1)y=logax___y=kx(k>0)单调性在(0,+∞)上单调____图象(随x的增大)逐渐与y轴平行逐渐与x轴平行直线逐渐上升增长速度(随x的增大)y的增长速度越来越____y的增长速度越来越____y值逐渐增加增长关系存在一个x0,当x>x0时,ax>kx>logax思考:已知函数f(x)=2x,g(x)=2x,h(x)=log2x.(1)函数f(x),g(x),h(x)随着x的增大,函数值有什么共同的变化趋势?(2)函数f(x),g(x),h(x)增长的速度有什么不同?【小试牛刀】1.下列说法正确的个数是()(1)函数y=x的衰减速度越来越慢.(2)增长速度不变的函数模型是一次函数模型.(3)若a>1,n>0,对于任意x0∈R,一定有ax0>x.A.0B.12原创精品资源学科网独家享有版权,侵权必究!C.2D.32.甲、乙两人在一次赛跑中,路程y与时间x的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲先到达终点【经典例题】题型一函数模型的增长差异三种函数模型的增长规律:(1)对于幂函数y=xn,当x>0,n>0时,y=xn才是增函数,当n越大时,增长速度越快.(2)指数函数与对数函数的递增前提是a>1,又它们的图象关于y=x对称,从而可知,当a越大,y=ax增长越快;当a越小,y=logax增长越快,一般来说,ax>logax(x>0,a>1).(3)指数函数与幂函数,当x>0,n>0,a>1时,可能开始时有xn>ax,但因指数函数是爆炸型函数,当x大于某一个确定值x0后,就一定有ax>xn.例1四个变量y1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y22321024327681.05×1063.36×1071.07×109y32102030405060y424.3225.3225.9076.3226.6446.907关于x呈指数函数变化的变量是____.[跟踪训练]1(1)下列函数中,增长速度最慢的是()A.y=6xB.y=log6xC.y=x6D.y=6x(2)有一组数据如下...