1.4充分条件与必要条件1.4.1充分条件与必要条件复习导入新知探索新知探索例析新知探索思考2:例1中命题(1)给出了“四边形是平行四边形”的一个充分条件,即“四边形的两组对角分别相等”.这样的充分条件唯一吗?如果不唯一,那么你能再给出几个不同的充分条件吗?新知探索所以,“平行四边形的两组对边分别相等”“四边形的一组对边平行且相等”“四边形的两条对角线互相平分”都是“四边形是平行四边形”的充分条件.事实上,例1中命题(1)及上述①②③均是平行四边形的判定定理.所以,平行四边形的每一条判定定理都给出了“四边形是平行四边形”的一个充分条件,即这个条件能充分保证四边形是平行四边形.类似地,平行线的每一条判定定理都给出了“两直线平行”的一个充分条件,例如“内错角相等”这个条件就充分保证了“两条直线平行”.一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.例析例析新知探索思考3:例2中命题(1)给出了“四边形是平行四边形”的一个必要条件,即“这个四边形的两组对角分别相等”.这样的必要条件唯一吗?如果不唯一,你能给出“四边形是平行四边形”的几个其他必要条件吗?新知探索这表明,“四边形的两组对边分别相等”“四边形的一组对边平行且相等”“四边形的两条对角线互相平分”都是“四边形是平行四边形”的必要条件.我们知道,例2中命题(1)及上述命题①②③均为平行四边形的性质定理.所以,平行四边形的每条性质定理都给出了“四边形是平行四边形”的一个必要条件.类似地,平行线的每条性质定理都给出了“两直线平行”的一个必要条件,例如“同位角相等”是“两直线平行”的必要条件,也就是说,如果同位角不相等,那么就不可能有“两直线平行”.一般地,数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.练习题型一:充分条件的判断与探求练习题型一:充分条件的判断与探求练习练习练习题型二:必要条件的判断与探求练习练习练习题型三:利用充分条件与必要条件求参数范围练习练习课堂小结&作业