第一章1.2空间向量基本定理学科网1.理解空间向量基本定理,并能用基本定理解决一些几何问题;2.理解基底、基向量及向量的线性组合的概念;3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.问题导学题型探究当堂训练学习目标知识点一空间向量基本定理思考平面向量基本定量的内容是什么?答案问题导学答案如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中,不共线的e1,e2叫做表示这一平面内所有向量的一组基底.答案梳理(1)如果三个向量a,b,c共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,把{a,b,c}叫做空间的一个基底,a,b,c叫做基向量,空间中任何三个不共面的向量都可以构成空间的一个基底.(2)基底选定后,空间所有向量均可由基底唯一表示,构成基底的三个向量a,b,c中,没有零向量.(3)单位正交基底:如果{e1,e2,e3}为单位正交基底,则这三个基向量的位置关系是两两,长度为1;且向量e1,e2,e3有公共的.垂直起点设OA―→=xi+yj,则向量OA―→的坐标(x,y)就是点A的坐标,即若OA―→=(x,y),则A点坐标为(x,y),反之亦成立(O是坐标原点).答案知识点二空间向量的坐标表示思考平面向量的坐标是如何表示的?答案在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使a=xi+yj,这样,平面内的任一向量a都可由x,y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.梳理(1)设e1,e2,e3为有公共起点O的三个两两垂直的单位向量(我们称它们为单位正交基底),以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz,那么对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量=p,由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=_____________,我们把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z),此时向量p的恰是点P在空间直角坐标系Oxyz中的坐标.OP―→(2)向量p的坐标是把向量p的起点平移到坐标原点O,则OP―→的终点P的坐标就是向量p的坐标,这样就把空间向量坐标化了.答案返回xe1+ye2+ze3坐标(x,y,z)解析答案类型一空间向量的基底题型...