1.1集合的概念数学(人教版)第一章集合与常用逻辑用语1.1.2集合的表示学习目标核心素养1.初步掌握集合的两种表示方法——列举法、描述法,感受集合语言的意义和作用.(重点)2.会用集合的两种表示方法表示一些简单集合.(重点、难点)1.通过学习描述法表示集合的方法,培养数学抽象的素养.2.借助描述法转化为列举法时的运算,培养数学运算的素养.自主预习探新知1.列举法把集合的所有元素出来,并用括起来表示集合的方法叫做列举法.2.描述法一般地,设A是一个集合,把集合A中所有具有P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.一一列举花括号“{}”共同特征思考:(1)不等式x-2<3的解集中的元素有什么共同特征?(2)如何用描述法表示不等式x-2<3的解集?提示:(1)元素的共同特征为x∈R,且x<5.(2){x|x<5,x∈R}.1.方程x2=4的解集用列举法表示为()A.{(-2,2)}B.{-2,2}C.{-2}D.{2}B[由x2=4得x=±2,故用列举法可表示为{-2,2}.]2.用描述法表示函数y=3x+1图象上的所有点的是()A.{x|y=3x+1}B.{y|y=3x+1}C.{(x,y)|y=3x+1}D.{y=3x+1}C[该集合是点集,故可表示为{(x,y)|y=3x+1},选C.]3.用描述法表示不等式4x-5<7的解集为________.{x|x<3}[用描述法可表示为{x|x<3}.]合作探究提素养【例1】用列举法表示下列给定的集合:(1)不大于10的非负偶数组成的集合A;(2)小于8的质数组成的集合B;(3)方程2x2-x-3=0的实数根组成的集合C;(4)一次函数y=x+3与y=-2x+6的图象的交点组成的集合D.用列举法表示集合[解](1)不大于10的非负偶数有0,2,4,6,8,10,所以A={0,2,4,6,8,10}.(2)小于8的质数有2,3,5,7,所以B={2,3,5,7}.(3)方程2x2-x-3=0的实数根为-1,32,所以C=-1,32.(4)由y=x+3,y=-2x+6,得x=1,y=4.所以一次函数y=x+3与y=-2x+6的交点为(1,4),所以D={(1,4)}.用列举法表示集合的3个步骤1求出集合的元素;2把元素一一列举出来,且相同元素只能列举一次;3用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{2,3,5,-1}.1.用列举法表示下列集合:(1)满足-2≤x≤2且x∈Z的元素组成的集合A;(2)方程(x-2)2(x-3)=0的解组成的集合M;(3)方程组2x+y=8,x-y=1的解组成的集合B;(4)15的正约数组成的集...