用微视角:将零散的知识,系统化、网络化、规律化【学生版】微专题:对数的化简与求值与数学应用的交汇【主题】幂、指数与对数之间密切联系,又蕴含的运算规律;会运用这些数、式建立模型,解决简单的实际问题,体会这些数、式在解决实际问题中的作用。【典例】例1、基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天【提示】【答案】【解析1】【提示】【答案】【解析2】【说明】例2、1614年纳皮尔在研究天文学的过程中为了简化计算而发明对数;1637年笛卡尔开始使用指数运算;1770年,欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数,称为历史上的珍闻;若,,则的值约为A.1.322B.1.410C.1.507D.1.669例3、十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,约翰纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来天才数学家欧拉发现了对数与指数的关系,即;现已知,,则,.第1页用微视角:将零散的知识,系统化、网络化、规律化例4、要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性.动植物死亡后,停止了新陈代谢,不再产生,且原有的会自动衰变.经过5730年(的半衰期),它的残余量只有原始量的一半.我国辽东半岛普兰店附近的泥炭中发掘出的古莲子中的残余量占原来的87.9%,试推算古莲子的生活年代。【归纳】在解决对数的化简与求值问题时,要理解并灵活运用对数的定义、对数的运算性质、对数恒等式和对数的换底公式,同时还要注意化简过程中的等价性和对数式与指数式的互化,有助于提升学生的转化能力和数学运算能力;【即时练习】1、在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=lg,其中星等为mk的星的亮度为Ek(k=1,2);已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为()A.1010.1B.10.1C.lg10.1D.10-10.12、当生物死亡后,其体内原有的碳14的含量大约每经过...