第十章概率第十章概率10.1随机事件与概率10.1.1有限样本空间与随机事件第十章概率第十章概率第十章概率在初中,我们已经初步了解了随机事件的概念,并学习了在试验结果等可能的情形下求简单随机事件的概率,本节我们将进一步研究随机事件及其概率的计算,探究随机事件概率的性质.第十章概率第十章概率研究某种随机现象的规律,首先要观察它所有可能的基本结果.①将一枚硬币抛掷2次,观察正面、反面出现的情况;例如:②从你所在的班级随机选择10名学生,观察近视的人数;③在一批灯管中任意抽取一只,测试它的寿命;④从一批发芽的水稻种子中随机选取一些,观察分蘖数;⑤记录某地区7月份的降雨量.第十章概率第十章概率我们把对随机现象的实现和对它的观察称为随机试验(randomexperiment),简称试验,常用字母E表示.我们感兴趣的是具有以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.可重复性可预知性随机性第十章概率第十章概率体育彩票摇奖时,将10个质地和大小完全相同分别标号0、1、2、…、9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码.这个随机试验共有多少个可能结果?如何表示这些结果?观察球的号码,共有10种可能结果.用数字m表示“摇出的球的号码为m”这一结果,那么所有可能结果可用集合表示为{0,1,2,3,4,5,6,7,8,9}.样本点:随机试验E的每个可能的基本结果.样本空间:全体样本点的集合.第十章概率第十章概率一般地,我们用Ω(欧米伽)表示样本空间,用ω表示样本点.在本书中,我们只讨论Ω为有限集的情况.如果一个随机试验有n个可能结果的ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.有了样本点和样本空间的概念,我们就可以用数学方法描述和研究随机现象了.第十章概率第十章概率例1抛掷一枚硬币,观察它落地时哪一面朝上,写出试验的样本空间.解:因为落地时只有正面朝上和反面朝上两个可能结果,所以试验的样本空间可以表示为Ω={正面朝上,反面朝上}.如果用h表示“正面朝上”,t表示“反面朝上”,则样本空间Ω={h,t}.第十章概率第十章概率例2抛掷一枚骰子,观察它落地时朝上的面的点数,写出试验的样本空间.解:用i表示朝上面的“点数为i”.因为落地时朝上面的点数有1,2,3,4,5,6共6个可能的基本结果,所以试验的样本空间可以表示为Ω={1,2,3,4...