第十章概率第十章概率10.3频率与概率第十章概率10.3.2随机模拟第十章概率第十章概率大量试验表明,在任何确定次数的随机试验中,一个随机事件A发生的频率具有随机性.一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)大数定律阐述了随着试验次教估计概率P(A).复习回顾思考:用频率估计概率,需要做大量的重复试验.有没有其他方法可以替代试验呢?第十章概率第十章概率我们知道,利用计算器或计算机软件可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟试验,这样就可以快速地进行大量重复试验了.又如,一个袋中装有2个红球和3个白球,这些球除颜色不同外没有其他差别.对于从袋中摸出一个球的试验,我们可以让计算器或计算机产生取值于集合{1,2,3,4,5}的随机数,用1、2表示红球,用3、4、5表示白球.这样不断产生1~5之间的整数随机数,相当于不断地做从袋中摸球的试验.例如,对于抛掷一枚质地均匀硬币的试验,我们可以让计算器或计算机产生取值于集合{0,1}的随机数,用0表示反面朝上,用1表示正面朝上.这样不断产生0、1两个随机数,相当于不断地做抛掷硬币的试验.第十章概率第十章概率下表是用电子表格软件模拟上述摸球试验的结果,其中n为试验次数,nA为摸到红球的频数,fn(A)为摸到红球的频率.n102050100150200250300nA6720456677104116fn(A)0.60.350.40.450.440.3850.4160.39fnn102050100150200250300利用随机模拟解决问题的方法为蒙特卡洛方法.第十章概率第十章概率例1从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月,…,十二月是等可能的.设事件A=“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件A发生的概率.根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验.因此,可以构建如下有放回摸球试验进行模拟:在袋子中装入编号为1,2,…,12的12个球,这些球除编号外没有什么差别.有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验.如果这6个数中至少有2个相同,表示事件A发生了.重复以上模拟试验20次,就可以统计出事件A发生的频率.方法1第十章概率第十章概率例1从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二...