试卷第1页,总3页学习目标1、概括出棱柱、棱锥、棱台的结构特征,2、培养抽象概括、归纳的能力,3、认识几何学和空间结合体知识梳理重点1空间几何体的类型1多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。重点2几种空间几何体的结构特征1棱柱的结构特征棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。棱柱的分类棱柱的性质专题19简单几何体复习与检测试卷第2页,总3页⑴侧棱都相等,侧面是平行四边形;⑵两个底面与平行于底面的截面是全等的多边形;⑶过不相邻的两条侧棱的截面是平行四边形;⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。长方体的性质⑴长方体的一条对角线的长的平方等于一个顶点上三条棱的平方和:AC12=AB2+AC2+AA12⑵长方体的一条对角线AC1与过定点A的三条棱所成的角分别是α、β、γ,那么:cos2α+cos2β+cos2γ=1sin2α+sin2β+sin2γ=2⑶长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则:cos2α+cos2β+cos2γ=2sin2α+sin2β+sin2γ=1棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。棱柱的面积和体积公式S直棱柱侧面=c·h(c为底面周长,h为棱柱的高)S直棱柱全=c·h+2S底V棱柱=S底·h重点3棱台的结构特征棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。图1-1棱柱试卷第3页,总3页正棱台的结构特征⑴各侧棱相等,各侧面都是全等的等腰梯形;⑵正棱台的两个底面和平行于底面的截面都是正多边形;⑶正棱台的对角面也是等腰梯形;⑷棱台经常被补成棱锥,然后利用形似三角形进行研究。正棱台的面积和体积公式S棱台侧=n/2(a+b)·h’(a为上底边长,b为下底边长,h’为棱台的斜高,n为边数)S棱台全=S上底+S下底+S侧V棱台=重点4空间几何体的视图1三视图:观察者从三个不同的位置观察同一个空间几何体而画出的图形。正视图:光线从几何体的前面向后面正投影,得到的投影图。侧视图:光线从几何体的左边向右边正投影,得到的投影图。俯视图:光线从几何体的上面向右边正投影,得到的投影图。注意:⑴俯视图画在正视图的...