1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司重难点突破15圆锥曲线中的圆问题目录1、曲线的两条互相垂直的切线的交点的轨迹是圆:.2、双曲线的两条互相垂直的切线的交点的轨迹是圆.3、抛物线的两条互相垂直的切线的交点在该抛物线的准线上.4、证明四点共圆的方法:方法一:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,则可肯定这四点共圆.方法二:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,则可肯定这四点共圆(根据圆的性质一一同弧所对的圆周角相等证).方法三:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其中一个外角等于其内对角时,则可肯定这四点共圆(根据圆的性质一一圆内接四边形的对角和为,并且任何一个外角都等于它的内对角).方法四:证明被证共圆的四点到某一定点的距离都相等,或证明被证四点连成的四边形其中三边中垂线有交点),则可肯定这四点共圆(根据圆的定义:平面内到定点的距离等于定长的点的轨迹为圆).题型一:蒙日圆问题2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司例1.(2023·全国·高三专题练习)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点为圆外一点,过引圆的两条切线、,、为切点,若,求动点的轨迹方程;(2)若动点为椭圆外一点,过引椭圆的两条切线、,、为切点,若,求出动点的轨迹方程;(3)在(2)问中若椭圆方程为,其余条件都不变,那么动点的轨迹方程是什么(直接写出答案即可,无需过程).例2.(2022·全国·高三专题练习)在学习过程中,我们通常遇到相似的问题.(1)已知动点为圆:外一点,过引圆的两条切线、,、为切点,若,求动点的轨迹方程;(2)若动点为椭圆:外一点,过引椭圆的两条切线、,、为切点,若,猜想动点的轨迹是什么,请给出证明并求出动点的轨迹方程.例3.(2023·河南·校联考模拟预测)在椭圆:()中,其所有外切矩形的顶点在一个定圆:上,称此圆为椭圆的蒙日圆.椭圆过,.(1)求椭圆的方程;(2)过椭圆的蒙日圆上一点,作椭圆的一条切线,与蒙日圆交于另一点,若,存在,证明:为定值.变式1.(2023秋·浙江宁波·高三期末)法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线3原创精品资源学科网独家享有版...