课时分层作业(六)诱导公式①②③④(建议用时:40分钟)一、选择题1.已知cos(π+θ)=,则cosθ=()A.B.-C.D.-B[因为cos(π+θ)=-cosθ=,所以cosθ=-.]2.(多选题)下列各式正确的是()A.sin(α+180°)=-sinαB.cos(-α+β)=-cos(α-β)C.sin(-α-360°)=-sinαD.cos(-α-β)=cos(α+β)ACD[sin(α+180°)=-sinα,cos(-α+β)=cos[-(α-β)]=cos(α-β),sin(-α-360°)=-sin(α+360°)=-sinα,cos(-α-β)=cos[-(α+β)]=cos(α+β).]3.计算sin2150°+sin2135°+2sin210°+cos2225°的值是()A.B.C.D.A[原式=sin230°+sin245°-2sin30°+cos245°=+-1+=.]4.若sin(π-α)=log8,且α∈,则cos(π+α)的值为()A.B.-C.±D.以上都不对B[因为sin(π-α)=sinα=log232-2=-,所以cos(π+α)=-cosα=-=-=-.]5.已知tan=,则tan=()A.B.-C.D.-B[因为tan=tan=-tan-α,所以tan=-.]二、填空题6.(一题两空)求值:(1)cos=______;(2)tan(-855°)=______.(1)-(2)1[(1)cos=cos=cos=cos=-cos=-.1/5(2)tan(-855°)=-tan855°=-tan(2×360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1.]7.已知cos=,则cos=________.-[因为-θ++θ=π,所以-θ=π-,所以cos=cos=-cos=-.]8.若tan(5π+α)=m,则的值为________.[由tan(5π+α)=m,得tanα=m.于是原式===.]三、解答题9.化简下列各式.(1)sincosπ.(2)sin(-960°)cos1470°-cos(-240°)sin(-210°).[解](1)sincosπ=-sincos=sincos=.(2)sin(-960°)cos1470°-cos(-240°)sin(-210°)=-sin(180°+60°+2×360°)cos(30°+4×360°)+cos(180°+60°)sin(180°+30°)=sin60°cos30°+cos60°sin30°=1.10.在△ABC中,若sin(2π-A)=-sin(π-B),cosA=-cos(π-B),求△ABC的三个内角.[解]由条件得sinA=sinB,cosA=cosB,平方相加得2cos2A=1,cosA=±,又因为A∈(0,π),所以A=或π.当A=π时,cosB=-<0,所以B∈,所以A,B均为钝角,不合题意,舍去.所以A=,cosB=,所以B=,所以C=π.综上所述,A=,B=,C=π.11.(多选题)在△ABC中,给出下列四个选项中,结果为常数的是()A.sin(A+B)+sinCB.cos(A+B)+cosCC.sin(2A+2B)+sin2CD.cos(2A+2B)+cos2C2/5BC[sin(A+B)+sinC=2sinC;cos(A+...