第二章第5炼函数的对称性与周期性函数及其性质第5炼函数的对称性与周期性一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可。例如:关于轴对称,或得到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称。①要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分:若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有②本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于本书由作者独家授权“学易书城”,其所含章节未经作者与学易书城同意不得随意转载第二章第5炼函数的对称性与周期性函数及其性质对称。2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和前面的符号均相反;二是的取值保证为所给对称中心即可。例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称。①要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分:若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有②本结论也可通过图像变换来理解,是奇函数,则关于中心对称,本书由作者独家授权“学易书城”,其所含章节未经作者与学易书城同意不得随意转载第二章第5炼函数的对称性与周期性函数及其性质而可视为平移了个单位(方向由的符号决定),所以关于对称。4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称...