第二章第4炼求函数的值域函数及其性质第4炼求函数的值域作为函数三要素之一,函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分。所以掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决。一、基础知识:1、求值域的步骤:(1)确定函数的定义域(2)分析解析式的特点,并寻找相对应的方法(此为关键步骤)(3)计算出函数的值域2、求值域的常用工具:尽管在有些时候,求值域就像神仙施法念口诀一样,一种解析式特点对应一个求值域的方法,只要掌握每种方法并将所求函数归好类即可操作,但也要掌握一些常用的思路与工具。(1)函数的单调性:决定函数图像的形状,同时对函数的值域起到决定性作用。若为单调函数,则在边界处取得最值(临界值)。(2)函数的图像(数形结合):如果能作出函数的图像,那么值域便一目了然(3)换元法:的解析式中可将关于的表达式视为一个整体,通过换元可将函数解析式化归为可求值域的形式。(4)最值法:如果函数在连续,且可求出的最大最小值,则的值域为注:一定在连续的前提下,才可用最值来解得值域3、常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归。(1)一次函数():一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域(2)二次函数():二次函数的图像为抛物线,通常可进行配方确定函数的本书由作者独家授权“学易书城”,其所含章节未经作者与学易书城同意不得随意转载第二章第4炼求函数的值域函数及其性质对称轴,然后利用图像进行求解。(关键点:①抛物线开口方向,②顶点是否在区间内)例:解:对称轴为:(3)反比例函数:(1)图像关于原点中心对称(2)当当(4)对勾函数:①解析式特点:的系数为1;注:因为此类函数的值域与相关,求的值时要先保证的系数为,再去确定的值例:,并不能直接确定,而是先要变形为,再求得②极值点:③极值点坐标:④定义域:⑤自然定义域下的值域:本书由作者独家授权“学易书城”,其所含章节未经作者与学易书城同意不得随意转载第二章第4炼求函数的值域函数及其性质(5)函数:注意与对勾函数进行对比①解析式特点:的系数为1;②函数的零点:③值域:(5)指数函数():其函数图像分为与两种情况,可根据图像求得值域...