第二章第12炼复合函数零点问题函数及其性质第12炼复合函数零点问题一、基础知识:1、复合函数定义:设,,且函数的值域为定义域的子集,那么通过的联系而得到自变量的函数,称是的复合函数,记为2、复合函数函数值计算的步骤:求函数值遵循“由内到外”的顺序,一层层求出函数值。例如:已知,计算解:3、已知函数值求自变量的步骤:若已知函数值求的解,则遵循“由外到内”的顺序,一层层拆解直到求出的值。例如:已知,,若,求解:令,则解得当,则当,则综上所述:由上例可得,要想求出的根,则需要先将视为整体,先求出的值,再求对应的解,这种思路也用来解决复合函数零点问题,先回顾零点的定义:4、函数的零点:设的定义域为,若存在,使得,则称为的一个零点5、复合函数零点问题的特点:考虑关于的方程根的个数,在解此类问题时,要分为两层来分析,第一层是解关于的方程,观察有几个的值使得等式成立;第本书由作者独家授权“学易书城”,其所含章节未经作者与学易书城同意不得随意转载第二章第12炼复合函数零点问题函数及其性质二层是结合着第一层的值求出每一个被几个对应,将的个数汇总后即为的根的个数6、求解复合函数零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出的图像(2)若已知零点个数求参数的范围,则先估计关于的方程中解的个数,再根据个数与的图像特点,分配每个函数值被几个所对应,从而确定的取值范围,进而决定参数的范围复合函数:二、典型例题例1:设定义域为的函数,若关于的方程由3个不同的解,则______思路:先作出的图像如图:观察可发现对于任意的,满足的的个数分别为2个()和3个(),已知有3个解,从而可得必为的根,而另一根为或者是负数。所以,可解得:,所以答案:5例2:关于的方程的不相同实根的本书由作者独家授权“学易书城”,其所含章节未经作者与学易书城同意不得随意转载第二章第12炼复合函数零点问题函数及其性质个数是()A.3B.4C.5D.8思路:可将视为一个整体,即,则方程变为可解得:或,则只需作出的图像,然后统计与与的交点总数即可,共有5个答案:C例3:已知函数,关于的方程()恰有6个不同实数解,则的取值范围是.思路:所解方程可视为,故考虑作出的图像:,则的图像如图,由图像可知,若有6个不同实数解,则必有,所以,解得答案:例4:已知定义在上的奇函数,当时,,则关于的方程本书由作者独家授权“学易书城”,其所含章节未经作者与学易书城同...